Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the ort...Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the orthogonality of different OAM modes.In this paper,we propose a novel OAM hologram generation method based on a densely connected U-net(DCU),where the densely connected convolution blocks(DCB)replace the convolution blocks of the U-net.Importantly,the reconstruction process of the OAM hologram is integrated into DCU as its output layer,so as to eliminate the requirement to prepare training data for the OAM hologram,which is required by conventional neural networks through an iterative algorithm.The experimental and simulation results show that the OAM hologram can rapidly be generated with the well-trained DCU,and the reconstructed image's quality from the generated OAM hologram is significantly improved in comparison with those from the Gerchberg-Saxton generation method,the Gerchberg-Saxton based generation method and the U-net method.In addition,a 10-bit OAM multiplexing hologram scheme is numerically demonstrated to have a high capacity with OAM hologram.展开更多
Optical vortices have the main features of helical wavefronts and spiral phase structures,and carry orbital angular momentum.This special structure of visible light has been produced and studied for various applicatio...Optical vortices have the main features of helical wavefronts and spiral phase structures,and carry orbital angular momentum.This special structure of visible light has been produced and studied for various applications.These notable characteristics of photons were also tested in the extreme-ultraviolet and X-ray regimes.In this article,we simulate the use of a simple afterburner configuration by directly adding helical undulators after the SASE undulators with the Shanghai Soft X-ray FEL to generate high intensity X-ray vortices with wavelengths^1 nm.Compared to other methods,this approach is easier to implement,cost-effective,and more efficient.展开更多
Studying orbital angular momentum(OAM) spectra is important for analyzing crosstalk in free-space optical(FSO)communication systems. This work offers a new method of simplifying the expressions for the OAM spectra...Studying orbital angular momentum(OAM) spectra is important for analyzing crosstalk in free-space optical(FSO)communication systems. This work offers a new method of simplifying the expressions for the OAM spectra of Laguerre-Gaussian(LG) beams under both weak/medium and strong atmospheric turbulences. We propose fixing the radius to the extreme point of the intensity distribution, review the expression for the OAM spectrum under weak/medium turbulence,derive the OAM spectrum expression for an LG beam under strong turbulence, and simplify both of them to concise forms.Then, we investigate the accuracy of the simplified expressions through simulations. We find that the simplified expressions permit accurate calculation of the OAM spectrum for large transmitted OAM numbers under any type of turbulence. Finally,we use the simplified expressions to analytically address the broadening of the OAM spectrum caused by atmospheric turbulence. This work should contribute to the concise theoretical derivation of analytical expressions for OAM channel matrices for FSO-OAM communications and the analytical study of the laws governing OAM spectra.展开更多
We propose a quantum multiple access communications scheme using Orbital Angular Momentum (OAM) sector states in the paper. In the scheme, each user has an individual modified Poincare Bloch sphere and encodes his inf...We propose a quantum multiple access communications scheme using Orbital Angular Momentum (OAM) sector states in the paper. In the scheme, each user has an individual modified Poincare Bloch sphere and encodes his information with his own corresponding sector OAM states. A prepared entangled photon pairs are separated at transmitter and receiver. At the transmitter, each user encodes his information with the sector OAM states on the photons and the superposition of the different sector OAM states is carried by the photons. Then the photons are transmitted through quantum noiseless channel to the receiver. At the receiver, each user could retrieve his information by coincidently measuring the transmitted photons with the receiver side photons which are modulated by a special prepared measurement basis. The theoretical analysis and the numerical simulations show that each user could get his information from the superposition state without error. It seems that this scheme provides a novel method for quantum multiple users communications.展开更多
Circular aperture antenna recently has been regarded as a nature source to generate high power radio orbital angular momentum (OAM) in millimeter (mm) wave; however, the radiation pattern was not investigated. The...Circular aperture antenna recently has been regarded as a nature source to generate high power radio orbital angular momentum (OAM) in millimeter (mm) wave; however, the radiation pattern was not investigated. Theoretical derivation of radiation pattern of circular aperture OAM antenna is conducted to evaluate the performance. Extensive simulations verify the validity of the theoretical result. Furthermore, performance of such antenna excited by orthogonal TE and TM modes is compared, which shows the potential application for TEgl mode to create pure OAM g-1 mode in a practical system, providing guidance for generation of twisted radio waves in mm-wave bands.展开更多
Many papers have been published on the study of orbital angular momentum(OAM)of the laser modes based on the Laguerre-Gaussian(LG)beam and helical phase plate or rotating cylindrical lens,and the principal ray of the ...Many papers have been published on the study of orbital angular momentum(OAM)of the laser modes based on the Laguerre-Gaussian(LG)beam and helical phase plate or rotating cylindrical lens,and the principal ray of the LG beam remains straight line.These ways are difficult to get a large OAM modes.In this paper,we propose a novel method to prepare a large OAM modes when the light propagates through a optical fiber winding around a curved path,and establish a theoretical framework based on the principal ray path changing.Firstly,we investigate three kinds of winding structure.Secondly,based on the analytical solutions and numerical calculations,we can find that the spiral body can achieve a large OAM temporal pulse.At the same time,based on the zero OAM diffraction diagram,we can obtain an improvement of resolving power beyond Rayleigh’s criterion.Finally,applying a large OAM diffraction pattern to realize 12-bitencodes,we can obtain a high-security optical information transfer system.展开更多
Orbital angular momentum(OAM)technology,refers to Laguerre-Gaussian(LG)beams,twisted beams,vector/vortex beams,acoustic vortex beams and fractional vortex beams.It is an emerging and promising technology to improve th...Orbital angular momentum(OAM)technology,refers to Laguerre-Gaussian(LG)beams,twisted beams,vector/vortex beams,acoustic vortex beams and fractional vortex beams.It is an emerging and promising technology to improve the communication capacity,spectral efficiency,and anti-jamming capability due to its helical phase fronts and infinite orthogonal states.Although the OAM research began in the 1990s,the developing trends,current status,issues and characteristics through a systematic observation have not yet been performed.This paper presents a knowledge-based evolution of OAM research published in the Web of Science(WoS)from 2011 to 2021 using bibliometric analysis in Citepspace.The results demonstrate that the bandwidth,efficiency,gain,divergence,phase quantization,bulky and complex feeding structures,misalignment,distortion,interferences atmospheric turbulence and diffraction were the key issues found in the OAM technology.The main research hotspots and categories,influential authors,leading journals,best institutions of OAM show a strong bias in favor of their functions and technology developments.The research on OAM was mainly performed by the counties that have developed the 5G and now moving towards 6G communications like China,USA and South Korea.This study would serve as an inclusive guide on the future research trends and status especially for the OAM researchers.展开更多
Given the enhanced channel capacity of wave chirality,acoustic communications based on the orbital angular momentum(OAM)of acoustic-vortex(AV)beams are of significant interest for underwater data transmissions.However...Given the enhanced channel capacity of wave chirality,acoustic communications based on the orbital angular momentum(OAM)of acoustic-vortex(AV)beams are of significant interest for underwater data transmissions.However,the stringent beam alignment is required for the coaxial arrangement of transceiver arrays to ensure the accuracy and reliability of OAM decoding.To avoid the required multiple measurements of the traditional orthogonality based algorithm,the beam alignment algorithm based on the OAM spectrum decomposition is proposed for AV communications by using simplified ring-arrays.Numerical studies of the single-OAM and OAM-multiplexed AV beams show that the error of the OAM spectrum increases with the translation distance and the deflection angle of the transceiver arrays.To achieve an ideal arrangement,two methods of the single-array translation alignment and the dual-array deflection alignment are developed based on the least standard deviation of the OAM spectrum(SD-OAM).By decreasing the SD-OAM towards zero using transceiver arrays of 16 transmitters and 16 receivers,accurate beam alignments are accomplished by multiple adjustments in three dimensions.The proposed method is also demonstrated by experimental measurements of the OAM dispersion and the SD-OAM for misaligned beams.The results demonstrate the feasibility of the rapid beam alignment based on the OAM spectrum decomposition by using simplified transceiver ring-arrays,and suggest more application potentials for acoustic communications.展开更多
Orbital Angular Momentum(OAM)waves are characterized by helical wave fronts and orthogonality between different modes.Therefore,OAM waves have huge potential in improving wireless communications'channel capacity a...Orbital Angular Momentum(OAM)waves are characterized by helical wave fronts and orthogonality between different modes.Therefore,OAM waves have huge potential in improving wireless communications'channel capacity and radar imaging's resolution.Consequently,the generation and application of OAM waves have attracted a lot of attention.And many methods are proposed to generate OAM waves.Although antenna array is the most popular method of generating OAM waves,OAM waves generated by antenna array have redundant modes.However,all advantages of OAM waves are closely related to infinite OAM modes.Thus,to better apply OAM waves to wireless communications and radar,it is very important to reduce unnecessary OAM modes and improve the OAM mode purity.In order to improve the OAM mode purity,two combined antenna arrays composed of X direction antenna and Y direction antenna array are proposed in this paper.The X direction antenna array and the Y direction antenna array are supplied by the excitations with the same amplitude and fixed phase shift.The overall phase shift of the X direction antenna array isπ/2 more or less than that of the Y direction antenna array.The results of formulas and antenna models in CST show that the combined antenna arrays can generate OAM waves with less redundant modes in x component,y component and z component.Besides,the z component carries pure OAM modes.展开更多
Not only high spectral efficiency(SE)but also high energy efficiency(EE)are required for future wireless communication systems.Radio orbital angular momentum(OAM)provides a new perspective of mode multiplexing to impr...Not only high spectral efficiency(SE)but also high energy efficiency(EE)are required for future wireless communication systems.Radio orbital angular momentum(OAM)provides a new perspective of mode multiplexing to improve SE.However,there are few studies on the EE performance of OAM mode multiplexing.In this paper,we investigate the SE and EE of a misaligned uniform concentric circle array(UCCA)-based multi-carrier multimode OAM and multiple-input multiple-output(MCMM-OAM-MIMO)system in the line-ofsight(LoS)channel,in which two transceiver architectures implemented by radio frequency(RF)analog synthesis and baseband digital synthesis are considered.The distance and angle of arrival(AoA)estimation are utilized for channel estimation and signal detection,whose training overhead is much less than that of traditional MIMO systems.Simulation results validate that the UCCA-based MCMM-OAM-MIMO system is superior to conventional MIMOOFDM system in the EE and SE performances.展开更多
A systematic study of the aperture efficiency and mode constituent for orbital angular momentum(OAM) vortex beam generated by digital metasurface is presented. The aperture efficiency and OAM spectrum are computed for...A systematic study of the aperture efficiency and mode constituent for orbital angular momentum(OAM) vortex beam generated by digital metasurface is presented. The aperture efficiency and OAM spectrum are computed for different bit numbers. It is found that the aperture efficiency declines for digital metasurface due to the phase quantization error,especially for 1-bit device. Fortunately, the OAM spectrum is barely affected by phase quantization and the designated main mode keeps dominant for different bit numbers, indicating that high purity OAM vortex beam can be generated by digital metasurface. Besides, the influence of topological charge l is also investigated. For a fixed metasurface, the radiation performance deteriorates sharply with the growing of l and the parasitic OAM mode becomes dominant at certain angle.At last, a prototype of 1-bit metasurface was simulated, fabricated and measured in anechoic chamber. The simulation and experiment results verify the correctness of the numerical analysis.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.62375140 and 61871234)the Open Research Fund of National Laboratory of Solid State Microstructures(Grant No.M36055).
文摘Orbital angular momentum(OAM)holography has become a promising technique in information encryption,data storage and opto-electronic computing,owing to the infinite topological charge of one single OAM mode and the orthogonality of different OAM modes.In this paper,we propose a novel OAM hologram generation method based on a densely connected U-net(DCU),where the densely connected convolution blocks(DCB)replace the convolution blocks of the U-net.Importantly,the reconstruction process of the OAM hologram is integrated into DCU as its output layer,so as to eliminate the requirement to prepare training data for the OAM hologram,which is required by conventional neural networks through an iterative algorithm.The experimental and simulation results show that the OAM hologram can rapidly be generated with the well-trained DCU,and the reconstructed image's quality from the generated OAM hologram is significantly improved in comparison with those from the Gerchberg-Saxton generation method,the Gerchberg-Saxton based generation method and the U-net method.In addition,a 10-bit OAM multiplexing hologram scheme is numerically demonstrated to have a high capacity with OAM hologram.
基金supported by the National Development and Reform Commission(20132347)National Basic Research Program of China(No.2015CB859700)。
文摘Optical vortices have the main features of helical wavefronts and spiral phase structures,and carry orbital angular momentum.This special structure of visible light has been produced and studied for various applications.These notable characteristics of photons were also tested in the extreme-ultraviolet and X-ray regimes.In this article,we simulate the use of a simple afterburner configuration by directly adding helical undulators after the SASE undulators with the Shanghai Soft X-ray FEL to generate high intensity X-ray vortices with wavelengths^1 nm.Compared to other methods,this approach is easier to implement,cost-effective,and more efficient.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61575027 and 61471051)
文摘Studying orbital angular momentum(OAM) spectra is important for analyzing crosstalk in free-space optical(FSO)communication systems. This work offers a new method of simplifying the expressions for the OAM spectra of Laguerre-Gaussian(LG) beams under both weak/medium and strong atmospheric turbulences. We propose fixing the radius to the extreme point of the intensity distribution, review the expression for the OAM spectrum under weak/medium turbulence,derive the OAM spectrum expression for an LG beam under strong turbulence, and simplify both of them to concise forms.Then, we investigate the accuracy of the simplified expressions through simulations. We find that the simplified expressions permit accurate calculation of the OAM spectrum for large transmitted OAM numbers under any type of turbulence. Finally,we use the simplified expressions to analytically address the broadening of the OAM spectrum caused by atmospheric turbulence. This work should contribute to the concise theoretical derivation of analytical expressions for OAM channel matrices for FSO-OAM communications and the analytical study of the laws governing OAM spectra.
基金Supported by the National Natural Science Foundation of China(No.61271238)the Specialized Research Fund for the Doctoral Program of Higher Education of China(No.20123223110003)+1 种基金the University Natural Science Research Foundation of Jiangsu Province(No.11KJA510002)the Open Research Fund of National Laboratory of Solid State Microstructures(M25020,M25022)
文摘We propose a quantum multiple access communications scheme using Orbital Angular Momentum (OAM) sector states in the paper. In the scheme, each user has an individual modified Poincare Bloch sphere and encodes his information with his own corresponding sector OAM states. A prepared entangled photon pairs are separated at transmitter and receiver. At the transmitter, each user encodes his information with the sector OAM states on the photons and the superposition of the different sector OAM states is carried by the photons. Then the photons are transmitted through quantum noiseless channel to the receiver. At the receiver, each user could retrieve his information by coincidently measuring the transmitted photons with the receiver side photons which are modulated by a special prepared measurement basis. The theoretical analysis and the numerical simulations show that each user could get his information from the superposition state without error. It seems that this scheme provides a novel method for quantum multiple users communications.
文摘Circular aperture antenna recently has been regarded as a nature source to generate high power radio orbital angular momentum (OAM) in millimeter (mm) wave; however, the radiation pattern was not investigated. Theoretical derivation of radiation pattern of circular aperture OAM antenna is conducted to evaluate the performance. Extensive simulations verify the validity of the theoretical result. Furthermore, performance of such antenna excited by orthogonal TE and TM modes is compared, which shows the potential application for TEgl mode to create pure OAM g-1 mode in a practical system, providing guidance for generation of twisted radio waves in mm-wave bands.
基金supported by the National Natural Science Foundation of China(Grant No.11504074)the State Key Laboratory of Quantum Optics and Quantum Optics Devices,Shanxi University(Grant No.KF202004).
文摘Many papers have been published on the study of orbital angular momentum(OAM)of the laser modes based on the Laguerre-Gaussian(LG)beam and helical phase plate or rotating cylindrical lens,and the principal ray of the LG beam remains straight line.These ways are difficult to get a large OAM modes.In this paper,we propose a novel method to prepare a large OAM modes when the light propagates through a optical fiber winding around a curved path,and establish a theoretical framework based on the principal ray path changing.Firstly,we investigate three kinds of winding structure.Secondly,based on the analytical solutions and numerical calculations,we can find that the spiral body can achieve a large OAM temporal pulse.At the same time,based on the zero OAM diffraction diagram,we can obtain an improvement of resolving power beyond Rayleigh’s criterion.Finally,applying a large OAM diffraction pattern to realize 12-bitencodes,we can obtain a high-security optical information transfer system.
基金supported by the project of 61971051 from the National Natural Science Foundation of China (NSFC)。
文摘Orbital angular momentum(OAM)technology,refers to Laguerre-Gaussian(LG)beams,twisted beams,vector/vortex beams,acoustic vortex beams and fractional vortex beams.It is an emerging and promising technology to improve the communication capacity,spectral efficiency,and anti-jamming capability due to its helical phase fronts and infinite orthogonal states.Although the OAM research began in the 1990s,the developing trends,current status,issues and characteristics through a systematic observation have not yet been performed.This paper presents a knowledge-based evolution of OAM research published in the Web of Science(WoS)from 2011 to 2021 using bibliometric analysis in Citepspace.The results demonstrate that the bandwidth,efficiency,gain,divergence,phase quantization,bulky and complex feeding structures,misalignment,distortion,interferences atmospheric turbulence and diffraction were the key issues found in the OAM technology.The main research hotspots and categories,influential authors,leading journals,best institutions of OAM show a strong bias in favor of their functions and technology developments.The research on OAM was mainly performed by the counties that have developed the 5G and now moving towards 6G communications like China,USA and South Korea.This study would serve as an inclusive guide on the future research trends and status especially for the OAM researchers.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11934009,11974187,and 12174198)
文摘Given the enhanced channel capacity of wave chirality,acoustic communications based on the orbital angular momentum(OAM)of acoustic-vortex(AV)beams are of significant interest for underwater data transmissions.However,the stringent beam alignment is required for the coaxial arrangement of transceiver arrays to ensure the accuracy and reliability of OAM decoding.To avoid the required multiple measurements of the traditional orthogonality based algorithm,the beam alignment algorithm based on the OAM spectrum decomposition is proposed for AV communications by using simplified ring-arrays.Numerical studies of the single-OAM and OAM-multiplexed AV beams show that the error of the OAM spectrum increases with the translation distance and the deflection angle of the transceiver arrays.To achieve an ideal arrangement,two methods of the single-array translation alignment and the dual-array deflection alignment are developed based on the least standard deviation of the OAM spectrum(SD-OAM).By decreasing the SD-OAM towards zero using transceiver arrays of 16 transmitters and 16 receivers,accurate beam alignments are accomplished by multiple adjustments in three dimensions.The proposed method is also demonstrated by experimental measurements of the OAM dispersion and the SD-OAM for misaligned beams.The results demonstrate the feasibility of the rapid beam alignment based on the OAM spectrum decomposition by using simplified transceiver ring-arrays,and suggest more application potentials for acoustic communications.
基金supported by the National Science Foundation of China(NSFC 62073334).
文摘Orbital Angular Momentum(OAM)waves are characterized by helical wave fronts and orthogonality between different modes.Therefore,OAM waves have huge potential in improving wireless communications'channel capacity and radar imaging's resolution.Consequently,the generation and application of OAM waves have attracted a lot of attention.And many methods are proposed to generate OAM waves.Although antenna array is the most popular method of generating OAM waves,OAM waves generated by antenna array have redundant modes.However,all advantages of OAM waves are closely related to infinite OAM modes.Thus,to better apply OAM waves to wireless communications and radar,it is very important to reduce unnecessary OAM modes and improve the OAM mode purity.In order to improve the OAM mode purity,two combined antenna arrays composed of X direction antenna and Y direction antenna array are proposed in this paper.The X direction antenna array and the Y direction antenna array are supplied by the excitations with the same amplitude and fixed phase shift.The overall phase shift of the X direction antenna array isπ/2 more or less than that of the Y direction antenna array.The results of formulas and antenna models in CST show that the combined antenna arrays can generate OAM waves with less redundant modes in x component,y component and z component.Besides,the z component carries pure OAM modes.
基金supported in part by the Fundamental Research Funds for the Central Universitiesthe Innovation Fund of Xidian University。
文摘Not only high spectral efficiency(SE)but also high energy efficiency(EE)are required for future wireless communication systems.Radio orbital angular momentum(OAM)provides a new perspective of mode multiplexing to improve SE.However,there are few studies on the EE performance of OAM mode multiplexing.In this paper,we investigate the SE and EE of a misaligned uniform concentric circle array(UCCA)-based multi-carrier multimode OAM and multiple-input multiple-output(MCMM-OAM-MIMO)system in the line-ofsight(LoS)channel,in which two transceiver architectures implemented by radio frequency(RF)analog synthesis and baseband digital synthesis are considered.The distance and angle of arrival(AoA)estimation are utilized for channel estimation and signal detection,whose training overhead is much less than that of traditional MIMO systems.Simulation results validate that the UCCA-based MCMM-OAM-MIMO system is superior to conventional MIMOOFDM system in the EE and SE performances.
文摘A systematic study of the aperture efficiency and mode constituent for orbital angular momentum(OAM) vortex beam generated by digital metasurface is presented. The aperture efficiency and OAM spectrum are computed for different bit numbers. It is found that the aperture efficiency declines for digital metasurface due to the phase quantization error,especially for 1-bit device. Fortunately, the OAM spectrum is barely affected by phase quantization and the designated main mode keeps dominant for different bit numbers, indicating that high purity OAM vortex beam can be generated by digital metasurface. Besides, the influence of topological charge l is also investigated. For a fixed metasurface, the radiation performance deteriorates sharply with the growing of l and the parasitic OAM mode becomes dominant at certain angle.At last, a prototype of 1-bit metasurface was simulated, fabricated and measured in anechoic chamber. The simulation and experiment results verify the correctness of the numerical analysis.