In the present paper we have made an attempt to investigate the importance of the concepts of dynamical stability and complexity along with their interelationship in an evolving biological systems described by a syste...In the present paper we have made an attempt to investigate the importance of the concepts of dynamical stability and complexity along with their interelationship in an evolving biological systems described by a system of kinetic (both deterministic and chaotic) equations. The key to the investigation lies in the expres-sion of a time-dependent Boltzmann-like entropy function derived from the dynamical model of the system. A significant result is the determination of the expression of Boltzmann - entropy production rate of the evolving system leading to the well-known Pesin-type identity which provides an elegant and simple meas-ure of dynamical complexity in terms of positive Lyapunov exponents. The expression of dynamical com-plexity has been found to be very suitable in the study of the increase of dynamical complexity with the suc-cessive instabilities resulting from the appearance of new polymer species (or ecological species) into the original system. The increase of the dynamical complexity with the evolutionary process has been explained with a simple competitive model system leading to the “principle of natural selection”.展开更多
Origami offers two-dimensional(2D)materials with great potential for applications in flexible electronics,sensors,and smart devices.However,the dynamic process,which is crucial to construct origami,is too fast to be c...Origami offers two-dimensional(2D)materials with great potential for applications in flexible electronics,sensors,and smart devices.However,the dynamic process,which is crucial to construct origami,is too fast to be characterized by using state-of-the-art experimental techniques.Here,to understand the dynamics and kinetics at the atomic level,we explore the edge effects,structural and energy evolution during the origami process of an elliptical graphene nano-island(GNI)on a highly ordered pyrolytic graphite(HOPG)substrate by employing steered molecular dynamics simulations.The results reveal that a sharper armchair edge is much easier to be lifted up and realize origami than a blunt zigzag edge.The potential energy of the GNI increases at the lifting-up stage,reaches the maximum at the beginning of the bending stage,decreases with the formation of van der Waals overlap,and finally reaches an energy minimum at a half-folded configuration.The unfolding barriers of elliptical GNIs with different lengths of major axis show that the major axis should be larger than 242 A to achieve a stable single-folded structure at room temperature.These findings pave the way for pursuing other 2D material origami and preparing origami-based nanodevices.展开更多
文摘In the present paper we have made an attempt to investigate the importance of the concepts of dynamical stability and complexity along with their interelationship in an evolving biological systems described by a system of kinetic (both deterministic and chaotic) equations. The key to the investigation lies in the expres-sion of a time-dependent Boltzmann-like entropy function derived from the dynamical model of the system. A significant result is the determination of the expression of Boltzmann - entropy production rate of the evolving system leading to the well-known Pesin-type identity which provides an elegant and simple meas-ure of dynamical complexity in terms of positive Lyapunov exponents. The expression of dynamical com-plexity has been found to be very suitable in the study of the increase of dynamical complexity with the suc-cessive instabilities resulting from the appearance of new polymer species (or ecological species) into the original system. The increase of the dynamical complexity with the evolutionary process has been explained with a simple competitive model system leading to the “principle of natural selection”.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61888102 and 52102193)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB30000000)the Fundamental Research Funds for the Central Universities。
文摘Origami offers two-dimensional(2D)materials with great potential for applications in flexible electronics,sensors,and smart devices.However,the dynamic process,which is crucial to construct origami,is too fast to be characterized by using state-of-the-art experimental techniques.Here,to understand the dynamics and kinetics at the atomic level,we explore the edge effects,structural and energy evolution during the origami process of an elliptical graphene nano-island(GNI)on a highly ordered pyrolytic graphite(HOPG)substrate by employing steered molecular dynamics simulations.The results reveal that a sharper armchair edge is much easier to be lifted up and realize origami than a blunt zigzag edge.The potential energy of the GNI increases at the lifting-up stage,reaches the maximum at the beginning of the bending stage,decreases with the formation of van der Waals overlap,and finally reaches an energy minimum at a half-folded configuration.The unfolding barriers of elliptical GNIs with different lengths of major axis show that the major axis should be larger than 242 A to achieve a stable single-folded structure at room temperature.These findings pave the way for pursuing other 2D material origami and preparing origami-based nanodevices.