The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity,but the accuracy is usually low.In this paper,we present a family of highaccuracy nonc...The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity,but the accuracy is usually low.In this paper,we present a family of highaccuracy nonconforming finite element methods for fourth order problems in arbitrary dimensions.The finite element methods are given in a unified way with respect to the dimension.This is an effort to reveal the balance between the accuracy and the complexity of finite element methods.展开更多
In this paper, we investigate numerical methods for high order differential equations. We propose new spectral and spectral element methods for high order problems with mixed inhomogeneous boundary conditions, and pro...In this paper, we investigate numerical methods for high order differential equations. We propose new spectral and spectral element methods for high order problems with mixed inhomogeneous boundary conditions, and prove their spectral accuracy by using the recent results on the Jacobi quasi-orthogonal approximation. Numerical results demonstrate the high accuracy of suggested algorithm, which also works well even for oscillating solutions.展开更多
A new method for the direct adaptive regulation of unknown nonlinear dynamical systems is proposed in this paper,paying special attention to the analysis of the model order problem.The method uses a neurofuzzy (NF) mo...A new method for the direct adaptive regulation of unknown nonlinear dynamical systems is proposed in this paper,paying special attention to the analysis of the model order problem.The method uses a neurofuzzy (NF) modeling of the unknown system,which combines fuzzy systems (FSs) with high order neural networks (HONNs).We propose the approximation of the unknown system by a special form of an NF-dynamical system (NFDS),which,however,may assume a smaller number of states than the original unknown model.The omission of states,referred to as a model order problem,is modeled by introducing a disturbance term in the approximating equations.The development is combined with a sensitivity analysis of the closed loop and provides a comprehensive and rigorous analysis of the stability properties.An adaptive modification method,termed ‘parameter hopping’,is incorporated into the weight estimation algorithm so that the existence and boundedness of the control signal are always assured.The applicability and potency of the method are tested by simulations on well known benchmarks such as ‘DC motor’ and ‘Lorenz system’,where it is shown that it performs quite well under a reduced model order assumption.Moreover,the proposed NF approach is shown to outperform simple recurrent high order neural networks (RHONNs).展开更多
In this paper,we propose the Laguerre spectral method for high order problems with mixed inhomogeneous boundary conditions.It is also available for approximated solutions growing fast at infinity.The spectral accura...In this paper,we propose the Laguerre spectral method for high order problems with mixed inhomogeneous boundary conditions.It is also available for approximated solutions growing fast at infinity.The spectral accuracy is proved.Numerical results demonstrate its high effectiveness.展开更多
The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementa...The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementarity problem(ELCP(M,N,p,q)),where M,N are nonsingular matrices of the following form:M=[D11H1K1D2],N=[D12H2K2D22],D11,D12,D21 and D22 are square nonsingular diagonal matrices.展开更多
In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower soluti...In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower solutions. Our results improve someknown works.展开更多
In this paper, we investigate the existence of positive solutions of a class higher order boundary value problems on time scales. The class of boundary value problems educes a four-point (or three-point or two-point...In this paper, we investigate the existence of positive solutions of a class higher order boundary value problems on time scales. The class of boundary value problems educes a four-point (or three-point or two-point) boundary value problems, for which some similar results are established. Our approach relies on the Krasnosel'skii fixed point theorem. The result of this paper is new and extends previously known results.展开更多
Third order singulary perturbed boundary value problem by means of differential inequality theories is studied. Based on the given results of second order nonlinear boundary value problem, the upper and lower solution...Third order singulary perturbed boundary value problem by means of differential inequality theories is studied. Based on the given results of second order nonlinear boundary value problem, the upper and lower solutions method of third order nonlinear boundary value problems by making use of Volterra type integral operator was established. Specific upper and lower solutions were constructed, and existence and asymptotic estimates of solutions under suitable conditions were obtained. The result shows that it seems to be new to apply these techniques to solving these kinds of third order singularly perturbed boundary value problem. An example is given to demonstrate the applications.展开更多
This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2...This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.展开更多
This paper deals with superlinear fourth-order elliptic problem under Navier boundary condition. By using the mountain pass theorem and suitable truncation, a multiplicity result is established for all λ〉 0 and some...This paper deals with superlinear fourth-order elliptic problem under Navier boundary condition. By using the mountain pass theorem and suitable truncation, a multiplicity result is established for all λ〉 0 and some previous result is extended.展开更多
In this paper, we investigate Jacobi pseudospectral method for fourth order problems. We establish some basic results on the Jacobi-Gauss-type interpolations in non-uniformly weighted Sobolev spaces, which serve as im...In this paper, we investigate Jacobi pseudospectral method for fourth order problems. We establish some basic results on the Jacobi-Gauss-type interpolations in non-uniformly weighted Sobolev spaces, which serve as important tools in analysis of numerical quadratures, and numerical methods of differential and integral equations. Then we propose Jacobi pseudospectral schemes for several singular problems and multiple-dimensional problems of fourth order. Numerical results demonstrate the spectral accuracy of these schemes, and coincide well with theoretical analysis.展开更多
In this article, we develop numerical method by constructing ninth degree spline function using extended cubic spline Bickley’s method to find the approximate solution of seventh order linear boundary value problems ...In this article, we develop numerical method by constructing ninth degree spline function using extended cubic spline Bickley’s method to find the approximate solution of seventh order linear boundary value problems at different step lengths. The approximate solution is compared with the solution obtained by eighth degree splines and exact solution. It has been observed that the approximate solution is an excellent agreement with exact solution. Low absolute error indicates that our numerical method is effective for solving high order linear boundary value problems.展开更多
The existence of positive solutions of the nonlinear fourth order problemu (4)(x)=λa(x)f(u(x)), u(0)=u′(0)=u′(1)=u(1)=0is studied, where a:[0,1]→R may change sign, f(0)>0,λ>0 is sufficiently small. Our ...The existence of positive solutions of the nonlinear fourth order problemu (4)(x)=λa(x)f(u(x)), u(0)=u′(0)=u′(1)=u(1)=0is studied, where a:[0,1]→R may change sign, f(0)>0,λ>0 is sufficiently small. Our approach is based on the Leray-Schauder fixed point theorem.展开更多
We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by vi...We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.展开更多
New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the cond...New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.展开更多
A two-grid partition of unity method for second order elliptic problems is proposed and analyzed. The standard two-grid method is a local and parallel method usually leading to a discontinuous solution in the entire c...A two-grid partition of unity method for second order elliptic problems is proposed and analyzed. The standard two-grid method is a local and parallel method usually leading to a discontinuous solution in the entire computational domain. Partition of unity method is employed to glue all the local solutions together to get the global continuous one, which is optimal in HI-norm. Furthermore, it is shown that the L^2 error can be improved by using the coarse grid correction. Numerical experiments are reported to support the theoretical results.展开更多
In this paper, the boundary value problems for nonlinear third order differential equations are treated. A generic approach based on nonpolynomial quintic spline is developed to solve such boundary value problem. We s...In this paper, the boundary value problems for nonlinear third order differential equations are treated. A generic approach based on nonpolynomial quintic spline is developed to solve such boundary value problem. We show that the approximate solutions of such problems obtained by the numerical algorithm developed using nonpolynomial quintic spline functions are better than those produced by other numerical methods. The algorithm is tested on a problem to demonstrate the practical usefulness of the approach.展开更多
The present paper tackles two-point boundary value problems for fourth-order differential equations as follows:Several existence theorems on multiple positive solutions to the problems are obtained, and some examples ...The present paper tackles two-point boundary value problems for fourth-order differential equations as follows:Several existence theorems on multiple positive solutions to the problems are obtained, and some examples are given to show the validity of these results.展开更多
The solvability of the fifth-order nonlinear dispersive equation δtu+au (δxu)^2+βδx^3u+γδx^5u = 0 is studied. By using the approach of Kenig, Ponce and Vega and some Strichartz estimates for the correspondi...The solvability of the fifth-order nonlinear dispersive equation δtu+au (δxu)^2+βδx^3u+γδx^5u = 0 is studied. By using the approach of Kenig, Ponce and Vega and some Strichartz estimates for the corresponding linear problem,it is proved that if the initial function u0 belongs to H^5(R) and s〉1/4,then the Cauchy problem has a unique solution in C([-T,T],H^5(R)) for some T〉0.展开更多
For a continuous, increasing function ω : R^+ →R^+/{0} of finite exponential type, this paper introduces the set Z(A, ω) of all x in a Banach space X for which the second order abstract differential equation ...For a continuous, increasing function ω : R^+ →R^+/{0} of finite exponential type, this paper introduces the set Z(A, ω) of all x in a Banach space X for which the second order abstract differential equation (2) has a mild solution such that [ω(t)]^-1u(t,x) is uniformly continues on R^+, and show that Z(A, ω) is a maximal Banach subspace continuously embedded in X, where A ∈ B(X) is closed. Moreover, A[z(A,ω) generates an O(ω(t)) strongly continuous cosine operator function family.展开更多
基金supported by National Natural Science Foundation of China (Grant No.11101415)the National Center for Mathematics and Interdisciplinary Sciences,CAS
文摘The approach of nonconforming finite element method admits users to solve the partial differential equations with lower complexity,but the accuracy is usually low.In this paper,we present a family of highaccuracy nonconforming finite element methods for fourth order problems in arbitrary dimensions.The finite element methods are given in a unified way with respect to the dimension.This is an effort to reveal the balance between the accuracy and the complexity of finite element methods.
文摘In this paper, we investigate numerical methods for high order differential equations. We propose new spectral and spectral element methods for high order problems with mixed inhomogeneous boundary conditions, and prove their spectral accuracy by using the recent results on the Jacobi quasi-orthogonal approximation. Numerical results demonstrate the high accuracy of suggested algorithm, which also works well even for oscillating solutions.
文摘A new method for the direct adaptive regulation of unknown nonlinear dynamical systems is proposed in this paper,paying special attention to the analysis of the model order problem.The method uses a neurofuzzy (NF) modeling of the unknown system,which combines fuzzy systems (FSs) with high order neural networks (HONNs).We propose the approximation of the unknown system by a special form of an NF-dynamical system (NFDS),which,however,may assume a smaller number of states than the original unknown model.The omission of states,referred to as a model order problem,is modeled by introducing a disturbance term in the approximating equations.The development is combined with a sensitivity analysis of the closed loop and provides a comprehensive and rigorous analysis of the stability properties.An adaptive modification method,termed ‘parameter hopping’,is incorporated into the weight estimation algorithm so that the existence and boundedness of the control signal are always assured.The applicability and potency of the method are tested by simulations on well known benchmarks such as ‘DC motor’ and ‘Lorenz system’,where it is shown that it performs quite well under a reduced model order assumption.Moreover,the proposed NF approach is shown to outperform simple recurrent high order neural networks (RHONNs).
基金The work of the first author is supported in part by NSF of China No.11171227Research Fund for young teachers of Jiangsu Normal University No.11XLR27+3 种基金and Priority Academic Program Development of Jiangsu Higher Education Institutions.The work of the second author is supported in part by NSF of China No.11171227Fund for Doctoral Authority of China No.20123127110001Fund for Einstitute of Shanghai Universities No.E03004and Leading Academic Discipline Project of Shanghai Municipal Education Commission No.J50101.
文摘In this paper,we propose the Laguerre spectral method for high order problems with mixed inhomogeneous boundary conditions.It is also available for approximated solutions growing fast at infinity.The spectral accuracy is proved.Numerical results demonstrate its high effectiveness.
文摘The modified AOR method for solving linear complementarity problem(LCP(M,p))was proposed in literature,with some convergence results.In this paper,we considered the MAOR method for generalized-order linear complementarity problem(ELCP(M,N,p,q)),where M,N are nonsingular matrices of the following form:M=[D11H1K1D2],N=[D12H2K2D22],D11,D12,D21 and D22 are square nonsingular diagonal matrices.
文摘In this paper, the existence and uniqueness of solutions for boundary valueproblem x′′′=f(t, x, x′, x″), x(0)=A, x′(0)=B, g(x′(1), x″(1))=0 are studied byusing Volterra type operator and upper and lower solutions. Our results improve someknown works.
基金The NSF (11201109) of Chinathe NSF (10040606Q50) of Anhui Province+1 种基金Excellent Talents Foundation (2012SQRL165) of University of Anhui Provincethe NSF (2012kj09) of Heifei Normal University
文摘In this paper, we investigate the existence of positive solutions of a class higher order boundary value problems on time scales. The class of boundary value problems educes a four-point (or three-point or two-point) boundary value problems, for which some similar results are established. Our approach relies on the Krasnosel'skii fixed point theorem. The result of this paper is new and extends previously known results.
文摘Third order singulary perturbed boundary value problem by means of differential inequality theories is studied. Based on the given results of second order nonlinear boundary value problem, the upper and lower solutions method of third order nonlinear boundary value problems by making use of Volterra type integral operator was established. Specific upper and lower solutions were constructed, and existence and asymptotic estimates of solutions under suitable conditions were obtained. The result shows that it seems to be new to apply these techniques to solving these kinds of third order singularly perturbed boundary value problem. An example is given to demonstrate the applications.
文摘This paper deals with the singular nonlinear third-order periodic boundary value problem u'' + p(3)u = f (t, u), 0 less than or equal to t less than or equal to 2pi, with u((i)) (0) = u((i)) (2pi), i = 0, 1, 2, where p is an element of (Graphics) and f is singular at t = 0, t = 1 and u = 0. Under suitable weaker conditions than those of [1], it is proved by constructing a special cone in C[0, 2pi] and employing the fixed point index theory that the problem has at least one or at least two positive solutions.
基金The 985 Program of Jilin Universitythe Science Research Foundation for Excellent Young Teachers of College of Mathematics at Jilin University
文摘This paper deals with superlinear fourth-order elliptic problem under Navier boundary condition. By using the mountain pass theorem and suitable truncation, a multiplicity result is established for all λ〉 0 and some previous result is extended.
基金The work of these authors is supported in part by NSF of China, N.10471095, Science Foundation of Shanghai N.04JC14062, Special Funds for Doctorial Authorities of Chinese Education Ministry N.20040270002, Shanghai Leading Academic Discipline Project N.T0401, E-institutes of Shanghai Municipal Education Commission, N.E03004, Special Funds for Major Specialities and Fund N.04DB15 of Shanghai Education Commission.
文摘In this paper, we investigate Jacobi pseudospectral method for fourth order problems. We establish some basic results on the Jacobi-Gauss-type interpolations in non-uniformly weighted Sobolev spaces, which serve as important tools in analysis of numerical quadratures, and numerical methods of differential and integral equations. Then we propose Jacobi pseudospectral schemes for several singular problems and multiple-dimensional problems of fourth order. Numerical results demonstrate the spectral accuracy of these schemes, and coincide well with theoretical analysis.
文摘In this article, we develop numerical method by constructing ninth degree spline function using extended cubic spline Bickley’s method to find the approximate solution of seventh order linear boundary value problems at different step lengths. The approximate solution is compared with the solution obtained by eighth degree splines and exact solution. It has been observed that the approximate solution is an excellent agreement with exact solution. Low absolute error indicates that our numerical method is effective for solving high order linear boundary value problems.
文摘The existence of positive solutions of the nonlinear fourth order problemu (4)(x)=λa(x)f(u(x)), u(0)=u′(0)=u′(1)=u(1)=0is studied, where a:[0,1]→R may change sign, f(0)>0,λ>0 is sufficiently small. Our approach is based on the Leray-Schauder fixed point theorem.
基金supported by Grant In Aid research fund of Virginia Military Instittue, USA
文摘We study boundary value problems for fractional integro-differential equations involving Caputo derivative of order α∈ (n-1, n) in Banach spaces. Existence and uniqueness results of solutions are established by virtue of the Holder's inequality, a suitable singular Cronwall's inequality and fixed point theorem via a priori estimate method. At last, examples are given to illustrate the results.
文摘New existence results are presented for the singular second-order nonlinear boundary value problems u ' + g(t)f(u) = 0, 0 < t < 1, au(0) - betau ' (0) = 0, gammau(1) + deltau ' (1) = 0 under the conditions 0 less than or equal to f(0)(+) < M-1, m(1) < f(infinity)(-)less than or equal to infinity or 0 less than or equal to f(infinity)(+)< M-1, m(1) < f (-)(0)less than or equal to infinity where f(0)(+) = lim(u -->0)f(u)/u, f(infinity)(-)= lim(u --> infinity)f(u)/u, f(0)(-)= lim(u -->0)f(u)/u, f(infinity)(+) = lim(u --> infinity)f(u)/u, g may be singular at t = 0 and/or t = 1. The proof uses a fixed point theorem in cone theory.
基金Project supported by the National Natural Science Foundation of China(No.40074031)the Science Foundation of the Science and Technology Commission of Shanghai Municipalitythe Program for Young Excellent Talents in Tongji University(No.2007kj008)
文摘A two-grid partition of unity method for second order elliptic problems is proposed and analyzed. The standard two-grid method is a local and parallel method usually leading to a discontinuous solution in the entire computational domain. Partition of unity method is employed to glue all the local solutions together to get the global continuous one, which is optimal in HI-norm. Furthermore, it is shown that the L^2 error can be improved by using the coarse grid correction. Numerical experiments are reported to support the theoretical results.
文摘In this paper, the boundary value problems for nonlinear third order differential equations are treated. A generic approach based on nonpolynomial quintic spline is developed to solve such boundary value problem. We show that the approximate solutions of such problems obtained by the numerical algorithm developed using nonpolynomial quintic spline functions are better than those produced by other numerical methods. The algorithm is tested on a problem to demonstrate the practical usefulness of the approach.
基金The Postdoctoral Science Research Foundation of Zhengzhou University.
文摘The present paper tackles two-point boundary value problems for fourth-order differential equations as follows:Several existence theorems on multiple positive solutions to the problems are obtained, and some examples are given to show the validity of these results.
文摘The solvability of the fifth-order nonlinear dispersive equation δtu+au (δxu)^2+βδx^3u+γδx^5u = 0 is studied. By using the approach of Kenig, Ponce and Vega and some Strichartz estimates for the corresponding linear problem,it is proved that if the initial function u0 belongs to H^5(R) and s〉1/4,then the Cauchy problem has a unique solution in C([-T,T],H^5(R)) for some T〉0.
文摘For a continuous, increasing function ω : R^+ →R^+/{0} of finite exponential type, this paper introduces the set Z(A, ω) of all x in a Banach space X for which the second order abstract differential equation (2) has a mild solution such that [ω(t)]^-1u(t,x) is uniformly continues on R^+, and show that Z(A, ω) is a maximal Banach subspace continuously embedded in X, where A ∈ B(X) is closed. Moreover, A[z(A,ω) generates an O(ω(t)) strongly continuous cosine operator function family.