期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
Test of Ordered Multivariate Discrete Selection Model for Average Life Expectancy
1
作者 Jiwei Liu 《Journal of Applied Mathematics and Physics》 2022年第2期261-269,共9页
At present, there are significant regional differences in average life expectancy among countries in the world. Not only is there a great disparity in average life expectancy, but also the gender difference is positiv... At present, there are significant regional differences in average life expectancy among countries in the world. Not only is there a great disparity in average life expectancy, but also the gender difference is positive and negative, and is distributed in a bipolar distribution of “long life in rich countries and short life in poor countries”. This paper analyzes the factors affecting the life grade by using the ordered multivariate discrete selection model and combined with the average life expectancy data of countries all over the world in 2017. The test results show that: 1) The growth of per capita GDP, elderly dependency ratio and the proportion of people using at least basic drinking water services can effectively improve the level of life expectancy;2) The birth rate has an inhibitory effect on the average life expectancy;3) Through model comparison, probit model is more suitable for the analysis of this kind of problems than logit model, and the properties of the obtained model are better. 展开更多
关键词 Average Life Expectancy Multivariate Discrete ordered model Life Grade Prediction
下载PDF
Assessment of a two-surface plasticity model for hexagonal materials 被引量:1
2
作者 R.Vigneshwaran A.A.Benzerga 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第12期4431-4444,共14页
A computationally efficient two-surface plasticity model is assessed against crystal plasticity. Focus is laid on the mechanical behavior of magnesium alloys in the presence of ductility-limiting defects, such as void... A computationally efficient two-surface plasticity model is assessed against crystal plasticity. Focus is laid on the mechanical behavior of magnesium alloys in the presence of ductility-limiting defects, such as voids. The two surfaces separately account for slip and twinning such that the constitutive formulation captures the evolving plastic anisotropy and evolving tension-compression asymmetry. For model identification, a procedure is proposed whereby the initial guess is based on a combination of experimental data and computationally intensive polycrystal calculations from the literature. In drawing direct comparisons with crystal plasticity, of which the proposed model constitutes a heuristically derived reduced-order model, the available crystal plasticity simulations are grouped in two datasets. A calibration set contains minimal data for both pristine and porous material subjected to one loading path. Then the two-surface model is assessed against a broader set of crystal plasticity simulations for voided unit cells under various stress states and two loading orientations. The assessment also includes microstructure evolution(rate of growth of porosity and void distortion). The ability of the two-surface model to capture essential features of crystal plasticity is analyzed along with an evaluation of computational cost. The prospects of using the model in guiding the development of physically sound damage models in Mg alloys are put forth in the context of high-throughput simulations. 展开更多
关键词 HCP metals Plastic anisotropy Reduced order model Void growth Void coalescence
下载PDF
Multi-Material Topology Optimization of Structures Using an Ordered Ersatz Material Model
3
作者 Baoshou Liu Xiaolei Yan +2 位作者 Yangfan Li Shiwei Zhou Xiaodong Huang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第8期523-540,共18页
This paper proposes a new element-based multi-material topology optimization algorithm using a single variable for minimizing compliance subject to a mass constraint.A single variable based on the normalized elemental... This paper proposes a new element-based multi-material topology optimization algorithm using a single variable for minimizing compliance subject to a mass constraint.A single variable based on the normalized elemental density is used to overcome the occurrence of meaningless design variables and save computational cost.Different from the traditional material penalization scheme,the algorithm is established on the ordered ersatz material model,which linearly interpolates Young’s modulus for relaxed design variables.To achieve a multi-material design,the multiple floating projection constraints are adopted to gradually push elemental design variables to multiple discrete values.For the convergent element-based solution,the multiple level-set functions are constructed to tentatively extract the smooth interface between two adjacent materials.Some 2D and 3D numerical examples are presented to demonstrate the effectiveness of the proposed algorithm and the possible advantage of the multi-material designs over the traditional solid-void designs. 展开更多
关键词 Multi-material topology optimization ordered ersatz material model mass constraint single variable
下载PDF
Model Identification and Control of Electromagnetic Actuation in Continuous Casting Process With Improved Quality
4
作者 Isabela Birs Cristina Muresan +1 位作者 Dana Copot Clara Ionescu 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第1期203-215,共13页
This paper presents an original theoretical framework to model steel material properties in continuous casting line process. Specific properties arising from non-Newtonian dynamics are herein used to indicate the natu... This paper presents an original theoretical framework to model steel material properties in continuous casting line process. Specific properties arising from non-Newtonian dynamics are herein used to indicate the natural convergence of distributed parameter systems to fractional order transfer function models. Data driven identification from a real continuous casting line is used to identify model of the electromagnetic actuator device to control flow velocity of liquid steel. To ensure product specifications, a fractional order control is designed and validated on the system. A projection of the closed loop performance onto the quality assessment at end production line is also given in this paper. 展开更多
关键词 Electromagnetic actuator fractional order control fractional order system model non-Newtonian material
下载PDF
High-Order Models of Nonlinear and Dispersive Wave in Water of Varying Depth with Arbitrary Sloping Bottom 被引量:26
5
作者 Hong Guangwen Professor, Coastal and Ocean Engineering Research Institute, Hohai University, Nanjing 210024, P. R. China. 《China Ocean Engineering》 SCIE EI 1997年第3期243-260,共18页
High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of ... High-order models with a dissipative term for nonlinear and dispersive wave in water of varying depth with an arbitrary sloping bottom are presented in this article. First, the formal derivations to any high order of mu(= h/lambda, depth to deep-water wave length ratio) and epsilon(= a/h, wave amplitude to depth ratio) for velocity potential, particle velocity vector, pressure and the Boussinesq-type equations for surface elevation eta and horizontal velocity vector (U) over right arrow at any given level in water are given. Then, the exact explicit expressions to the fourth order of mu are derived. Finally, the linear solutions of eta, (U) over right arrow, C (phase-celerity) and C-g (group velocity) for a constant water depth are obtained. Compared with the Airy theory, excellent results can be found even for a water depth as large as the wave legnth. The present high-order models are applicable to nonlinear regular and irregular waves in water of any varying depth (from shallow to deep) and bottom slope (from mild to steep). 展开更多
关键词 nonlinear wave dispersive wave high order models Boussinesq-type equations varying depth arbitrary sloping bottom
下载PDF
Adding-Point Strategy for Reduced-Order Hypersonic Aerothermodynamics Modeling Based on Fuzzy Clustering 被引量:6
6
作者 CHEN Xin LIU Li +1 位作者 ZHOU Sida YUE Zhenjiang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期983-991,共9页
Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow con... Reduced order models(ROMs) based on the snapshots on the CFD high-fidelity simulations have been paid great attention recently due to their capability of capturing the features of the complex geometries and flow configurations. To improve the efficiency and precision of the ROMs, it is indispensable to add extra sampling points to the initial snapshots, since the number of sampling points to achieve an adequately accurate ROM is generally unknown in prior, but a large number of initial sampling points reduces the parsimony of the ROMs. A fuzzy-clustering-based adding-point strategy is proposed and the fuzzy clustering acts an indicator of the region in which the precision of ROMs is relatively low. The proposed method is applied to construct the ROMs for the benchmark mathematical examples and a numerical example of hypersonic aerothermodynamics prediction for a typical control surface. The proposed method can achieve a 34.5% improvement on the efficiency than the estimated mean squared error prediction algorithm and shows same-level prediction accuracy. 展开更多
关键词 reduced order model fuzzy clustering hypersonic aerothermodynamics adding-point strategy
下载PDF
A Comparative Study of Fractional Order Models on State of Charge Estimation for Lithium Ion Batteries 被引量:5
7
作者 Jinpeng Tian Rui Xiong +1 位作者 Weixiang Shen Ju Wang 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2020年第4期98-112,共15页
State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have p... State of charge(SOC)estimation for lithium ion batteries plays a critical role in battery management systems for electric vehicles.Battery fractional order models(FOMs)which come from frequency-domain modelling have provided a distinct insight into SOC estimation.In this article,we compare five state-of-the-art FOMs in terms of SOC estimation.To this end,firstly,characterisation tests on lithium ion batteries are conducted,and the experimental results are used to identify FOM parameters.Parameter identification results show that increasing the complexity of FOMs cannot always improve accuracy.The model R(RQ)W shows superior identification accuracy than the other four FOMs.Secondly,the SOC estimation based on a fractional order unscented Kalman filter is conducted to compare model accuracy and computational burden under different profiles,memory lengths,ambient temperatures,cells and voltage/current drifts.The evaluation results reveal that the SOC estimation accuracy does not necessarily positively correlate to the complexity of FOMs.Although more complex models can have better robustness against temperature variation,R(RQ),the simplest FOM,can overall provide satisfactory accuracy.Validation results on different cells demonstrate the generalisation ability of FOMs,and R(RQ)outperforms other models.Moreover,R(RQ)shows better robustness against truncation error and can maintain high accuracy even under the occurrence of current or voltage sensor drift. 展开更多
关键词 Electric vehicle Lithium ion battery Fractional order model State of charge
下载PDF
Modeling mechanism of a novel fractional grey mode based on matrix analysis 被引量:3
8
作者 shuhua mao min zhu +2 位作者 xinping yan mingyun gao xinping xiao 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2016年第5期1040-1053,共14页
To fully display the modeling mechanism of the novelfractional order grey model (FGM (q,1)), this paper decomposesthe data matrix of the model into the mean generation matrix, theaccumulative generation matrix and... To fully display the modeling mechanism of the novelfractional order grey model (FGM (q,1)), this paper decomposesthe data matrix of the model into the mean generation matrix, theaccumulative generation matrix and the raw data matrix, whichare consistent with the fractional order accumulative grey model(FAGM (1,1)). Following this, this paper decomposes the accumulativedata difference matrix into the accumulative generationmatrix, the q-order reductive accumulative matrix and the rawdata matrix, and then combines the least square method, findingthat the differential order affects the model parameters only byaffecting the formation of differential sequences. This paper thensummarizes matrix decomposition of some special sequences,such as the sequence generated by the strengthening and weakeningoperators, the jumping sequence, and the non-equidistancesequence. Finally, this paper expresses the influences of the rawdata transformation, the accumulation sequence transformation,and the differential matrix transformation on the model parametersas matrices, and takes the non-equidistance sequence as an exampleto show the modeling mechanism. 展开更多
关键词 fractional order grey model generalized accumulativegeneration matrix decomposition non-equidistance sequence modeling mechanism.
下载PDF
Sliding Mode Control Design via Reduced Order Model Approach 被引量:2
9
作者 B.Bandyopadhyay Alemayehu G/Egziabher Abera +1 位作者 S.Janardhanan Victor Sreeram 《International Journal of Automation and computing》 EI 2007年第4期329-334,共6页
This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model g... This paper presents a design of continuous-time sliding mode control for the higher order systems via reduced order model. It is shown that a continuous-time sliding mode control designed for the reduced order model gives similar performance for thc higher order system. The method is illustrated by numerical examples. The paper also introduces a technique for design of a sliding surface such that the system satisfies a cost-optimality condition when on the sliding surface. 展开更多
关键词 Sliding mode control order reduction reduced order model higher order system optimal control.
下载PDF
Fractional Order Modeling of Human Operator Behavior with Second Order Controlled Plant and Experiment Research 被引量:2
10
作者 Jiacai Huang Yang Quan Chen +1 位作者 Haibin Li Xinxin Shi 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第3期271-280,279-280+272-278,共10页
Modeling human operator's dynamics plays a very important role in the manual closed-loop control system, and it is an active research area for several decades. Based on the characteristics of human brain and behav... Modeling human operator's dynamics plays a very important role in the manual closed-loop control system, and it is an active research area for several decades. Based on the characteristics of human brain and behavior, a new kind of fractional order mathematical model for human operator in single-input single-output(SISO) systems is proposed. Compared with the traditional models based on the commonly used quasilinear transfer function method or the optimal control theory method, the proposed fractional order model has simpler structure with only few parameters, and each parameter has explicit physical meanings. The actual data and experiment results with the second-order controlled plant illustrate the effectiveness of the proposed method. 展开更多
关键词 Fractional order modeling fractional calculus human operator human in the loop second order controlled plant
下载PDF
Fractional Modeling and SOC Estimation of Lithium-ion Battery 被引量:2
11
作者 Yan Ma Xiuwen Zhou +1 位作者 Bingsi Li Hong Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI 2016年第3期281-287,共7页
This paper proposes a state of charge(SOC) estimator of Lithium-ion battery based on a fractional order impedance spectra model. Firstly, a battery fractional order impedance model is derived on the grounds of the cha... This paper proposes a state of charge(SOC) estimator of Lithium-ion battery based on a fractional order impedance spectra model. Firstly, a battery fractional order impedance model is derived on the grounds of the characteristics of Warburg element and constant phase element(CPE) over a wide range of frequency domain. Secondly, a frequency fitting method and parameter identification algorithm based on output error are presented to identify parameters of the fractional order model of Lithium-ion battery. Finally, the fractional order Kalman filter approach is introduced to estimate the SOC of the lithium-ion battery based on the fractional order model. The simulation results show that the fractional-order model can ensure an acceptable accuracy of the SOC estimation, and the error of estimation reaches maximally up to 0.5 % SOC. 展开更多
关键词 Lithium-ion battery fractional order model electrochemical impedance spectra fractional Kalman filter
下载PDF
A second order random wave model for predicting the power performances of a wave energy converter 被引量:1
12
作者 Yingguang Wang 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2021年第4期127-135,共9页
The power performances of a point absorber wave energy converter(WEC)operating in a nonlinear multidirectional random sea are rigorously investigated.The absorbed power of the WEC Power-Take-Off system has been predic... The power performances of a point absorber wave energy converter(WEC)operating in a nonlinear multidirectional random sea are rigorously investigated.The absorbed power of the WEC Power-Take-Off system has been predicted by incorporating a second order random wave model into a nonlinear dynamic filter.This is a new approach,and,as the second order random wave model can be utilized to accurately simulate the nonlinear waves in an irregular sea,avoids the inaccuracies resulting from using a first order linear wave model in the simulation process.The predicted results have been systematically analyzed and compared,and the advantages of using this new approach have been convincingly substantiated. 展开更多
关键词 absorbed power wave energy converters Power-Take-Off second order wave model realistic sea
下载PDF
NEW METHOD FOR LOW ORDER SPECTRAL MODEL AND ITS APPLICATION 被引量:1
13
作者 曹杰 尤亚磊 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2006年第4期477-484,共8页
In order to overcome the deficiency in classical method of low order spectral model, a new method for low order spectral model was advanced. Through calculating the multiple correlation coefficients between combinatio... In order to overcome the deficiency in classical method of low order spectral model, a new method for low order spectral model was advanced. Through calculating the multiple correlation coefficients between combinations of different functions and the recorded data under the least square criterion, the truncated functions which can mostly reflect the studied physical phenomenon were objectively distilled from these data. The new method overcomes the deficiency of artificially selecting the truncated functions in the classical low order spectral model. The new method being applied to study the inter-annual variation of summer atmospheric circulation over Northern Hemisphere, the truncated functions were obtained with the atmospheric circulation data of June 1994 and June 1998. The mechanisms for the two-summer atmospheric circulation variations over Northern Hemisphere were obtained with two-layer quasi-geostrophic baroclinic equation. 展开更多
关键词 low order spectral model least square criterion truncated function atmospheric circulation in summer physical mechanism
下载PDF
Fast Model-based Design of High Performance Permanent Magnet Machine for Next Generation Electric Propulsion for Urban Aerial Vehicle Application 被引量:3
14
作者 Sarbajit Paul Junghwan Chang 《CES Transactions on Electrical Machines and Systems》 CSCD 2021年第2期143-151,共9页
Model order reduction(MOR)is considered as a good alternative to reduce the computational scale for electro-magnetic problems.The aim of this work is to introduce the use of dynamic mode decomposition(DMD)as a promisi... Model order reduction(MOR)is considered as a good alternative to reduce the computational scale for electro-magnetic problems.The aim of this work is to introduce the use of dynamic mode decomposition(DMD)as a promising tool for MOR to analyze its effectiveness in creating a fast model-based design platform for the permanent magnet motor design for ur-ban aerial vehicles(UAVs).Using a singular value decomposition(SVD)based DMD,the design process is constructed and verified against different scenarios. 展开更多
关键词 Dynamic mode decomposition model order reduction permanent magnet synchronous motor urban aerial vehicles
下载PDF
Numerical Analysis and Transformative Predictions of Fractional Order Epidemic Model during COVID-19 Pandemic: A Critical Study from Bangladesh 被引量:1
15
作者 Ovijit Chandrow Neloy Chandra Das +2 位作者 Niloy Chandra Shil Niloy Dey Md. Tareque Rahaman 《Journal of Applied Mathematics and Physics》 2021年第9期2258-2276,共19页
The COVID-19 pandemic is a curse and a threat to global health, development, the economy, and peaceful society because of its massive transmission and high rates of mutation. More than 220 countries have been affected... The COVID-19 pandemic is a curse and a threat to global health, development, the economy, and peaceful society because of its massive transmission and high rates of mutation. More than 220 countries have been affected by COVID-19. The world is now facing a drastic situation because of this ongoing virus. Bangladesh is also dealing with this issue, and due to its dense population, it is particularly vulnerable to the spread of COVID-19. Recently, many non-linear systems have been proposed to solve the SIR (Susceptible, Infected, and Recovered) model for predicting Coronavirus cases. In this paper, we have discussed the fractional order SIR epidemic model of a non-fatal disease in a population of a constant size. Using the Laplace Adomian Decomposition method, we get an approximate solution to the model. To predict the dynamic transmission of COVID-19 in Bangladesh, we provide a numerical argument based on real data. We also conducted a comparative analysis among susceptible, infected, and recovered people. Furthermore, the most sensitive parameters for the Basic Reproduction Number (<em>R</em><sub>0</sub>) are graphically presented, and the impact of the compartments on the transmission dynamics of the COVID-19 pandemic is thoroughly investigated. 展开更多
关键词 COVID-19 BANGLADESH Fractional Order SIR model Laplace Adomian Decomposition Method BRN
下载PDF
Advances of Model Order Reduction Research in Large-scale System Simulation
16
作者 SUN Dao-heng, MA Hai-yang, WANG Yan-hua (Department of Mechanical and Electrical Engineering, Xiamen Universi ty, Xiamen 361005, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期174-,共1页
Model Order Reduction (MOR) plays more and more imp or tant role in complex system simulation, design and control recently. For example , for the large-size space structures, VLSI and MEMS (Micro-ElectroMechanical Sys... Model Order Reduction (MOR) plays more and more imp or tant role in complex system simulation, design and control recently. For example , for the large-size space structures, VLSI and MEMS (Micro-ElectroMechanical Systems) etc., in order to shorten the development cost, increase the system co ntrolling accuracy and reduce the complexity of controllers, the reduced order model must be constructed. Even in Virtual Reality (VR), the simulation and d isplay must be in real-time, the model order must be reduced too. The recent advances of MOR research are overviewed in the article. The MOR theor y and methods may be classified as Singular Value decomposition (SVD) based, the Krylov subspace based and others. The merits and demerits of the different meth ods are analyzed, and the existed problems are pointed out. Moreover, the applic ation’s fields are overviewed, and the potential applications are forecaste d. After the existed problems analyzed, the future work is described. There are som e problems in the traditional methods such as SVD and Krylov subspace, they are that it’s difficult to (1)guarantee the stability of the original system, (2) b e adaptive to nonlinear system, and (3) control the modeling accuracy. The f uture works may be solving the above problems on the foundation of the tradition al methods, and applying other methods such as wavelet or signal compression. 展开更多
关键词 model order reduction large-scale system SVD krylov
下载PDF
Improved Algebraic Model for Serial Production Lines with Limited Buffer Sizes
17
作者 Ke Liu Zhichun Mu +2 位作者 Datai Yu Dal Koshal David Pearce(Information Engineering School,University, of Science and Technology Beijing, Beijing 100083, China) (School of Engineering, University of Brighton, Brighton Brighton BN2 4GJ UK 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 1999年第2期139-143,共5页
The ordered event model is improved to describe serial production lines with limited buffer sizes. The improved model hasthe same computational burden as the original one and can be constrUcted directly according to g... The ordered event model is improved to describe serial production lines with limited buffer sizes. The improved model hasthe same computational burden as the original one and can be constrUcted directly according to given principles. Several simulationexamples are cited to verify this improved model. Extensions and open problems are also indicated. By means of this new model, serialProduotion lines with limitations of resources can be stUdied analytically. 展开更多
关键词 ordered event model serial production line buffer size PERIOD
下载PDF
An Adaptive Substructure-Based Model Order Reduction Method for Nonlinear Seismic Analysis in OpenSees
18
作者 Jian Wang Ming Fang Hui Li 《Computer Modeling in Engineering & Sciences》 SCIE EI 2020年第7期79-106,共28页
Structural components may enter an initial-elastic state,a plastic-hardening state and a residual-elastic state during strong seismic excitations.In the residual-elastic state,structural components keep in an unloadin... Structural components may enter an initial-elastic state,a plastic-hardening state and a residual-elastic state during strong seismic excitations.In the residual-elastic state,structural components keep in an unloading/reloading stage that is dominated by a tangent stiffness,thus structural components remain residual deformations but behave in an elastic manner.It has a great potential to make model order reduction for such structural components using the tangent-stiffness-based vibration modes as a reduced order basis.In this paper,an adaptive substructure-based model order reduction method is developed to perform nonlinear seismic analysis for structures that have a priori unknown damage distribution.This method is able to generate time-varying substructures and make nonlinear model order reduction for substructures in the residual-elastic phase.The finite element program OpenSees has been extended to provide the adaptive substructure-based nonlinear seismic analysis.At the low level of OpenSees framework,a new abstract layer is created to represent the time-varying substructures and implement the modeling process of substructures.At the high level of OpenSees framework,a new transient analysis class is created to implement the solving process of substructure-based governing equations.Compared with the conventional time step integration method,the adaptive substructure-based model order reduction method can yield comparative results with a higher computational efficiency. 展开更多
关键词 Adaptive substructure modeling model order reduction nonlinear seismic
下载PDF
A Real-time Cutting Model Based on Finite Element and Order Reduction
19
作者 Xiaorui Zhang Wenzheng Zhang +3 位作者 Wei Sun Hailun Wu Aiguo Song Sunil Kumar Jha 《Computer Systems Science & Engineering》 SCIE EI 2022年第10期1-15,共15页
Telemedicine plays an important role in Corona Virus Disease 2019(COVID-19).The virtual surgery simulation system,as a key component in telemedicine,requires to compute in real-time.Therefore,this paper proposes a rea... Telemedicine plays an important role in Corona Virus Disease 2019(COVID-19).The virtual surgery simulation system,as a key component in telemedicine,requires to compute in real-time.Therefore,this paper proposes a realtime cutting model based on finite element and order reduction method,which improves the computational speed and ensure the real-time performance.The proposed model uses the finite element model to construct a deformation model of the virtual lung.Meanwhile,a model order reduction method combining proper orthogonal decomposition and Galerkin projection is employed to reduce the amount of deformation computation.In addition,the cutting path is formed according to the collision intersection position of the surgical instrument and the lesion area of the virtual lung.Then,the Bezier curve is adopted to draw the incision outline after the virtual lung has been cut.Finally,the simulation system is set up on the PHANTOM OMNI force haptic feedback device to realize the cutting simulation of the virtual lung.Experimental results show that the proposed model can enhance the real-time performance of telemedicine,reduce the complexity of the cutting simulation and make the incision smoother and more natural. 展开更多
关键词 Virtual surgery cutting model finite element model model order reduction Bezier curve
下载PDF
A New Lung Mechanics Model and Its Evaluation with Clinical Data
20
作者 Manjunath Jayaramaiah Bernhard Laufer +1 位作者 Jörn Kretschmer Knut Möller 《Journal of Biomedical Science and Engineering》 2016年第10期107-115,共9页
Acute Respiratory Distress Syndrome (ARDS) is a major cause of morbidity and has a high rate of mortality. ARDS patients in the intensive care unit (ICU) require mechan-ical ventilation (MV) for breathing support, but... Acute Respiratory Distress Syndrome (ARDS) is a major cause of morbidity and has a high rate of mortality. ARDS patients in the intensive care unit (ICU) require mechan-ical ventilation (MV) for breathing support, but inappropriate settings of MV can lead to ventilator induced lung injury (VILI). Those complications may be avoided by carefully optimizing ventilation parameters through model-based approaches. In this study we introduced a new model of lung mechanics (mNARX) which is a variation of the NARX model by Langdon et al. A multivariate process was undertaken to deter-mine the optimal parameters of the mNARX model and hence, the final structure of the model fit 25 patient data sets and successfully described all parts of the breathing cycle. The model was highly successful in predicting missing data and showed minimal error. Thus, this model can be used by the clinicians to find the optimal patient specific ventilator settings. 展开更多
关键词 Acute Respiratory Distress Syndrome Ventilator Induced Lung Injury Non-Linear Autoregressive model First Order model Mechanical Ventilation
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部