We introduce a new parallel evolutionary algorithm in modeling dynamic systems by nonlinear higher-order ordinary differential equations (NHODEs). The NHODEs models are much more universal than the traditional linear ...We introduce a new parallel evolutionary algorithm in modeling dynamic systems by nonlinear higher-order ordinary differential equations (NHODEs). The NHODEs models are much more universal than the traditional linear models. In order to accelerate the modeling process, we propose and realize a parallel evolutionary algorithm using distributed CORBA object on the heterogeneous networking. Some numerical experiments show that the new algorithm is feasible and efficient.展开更多
In this paper,we have proposed a numerical method for Singularly Perturbed Boundary Value Problems(SPBVPs)of convection-diffusion type of third order Ordinary Differential Equations(ODEs)in which the SPBVP is reduced ...In this paper,we have proposed a numerical method for Singularly Perturbed Boundary Value Problems(SPBVPs)of convection-diffusion type of third order Ordinary Differential Equations(ODEs)in which the SPBVP is reduced into a weakly coupled system of two ODEs subject to suitable initial and boundary conditions.The numerical method combines boundary value technique,asymptotic expansion approximation,shooting method and finite difference scheme.In order to get a numerical solution for the derivative of the solution,the domain is divided into two regions namely inner region and outer region.The shooting method is applied to the inner region while standard finite difference scheme(FD)is applied for the outer region.Necessary error estimates are derived for the method.Computational efficiency and accuracy are verified through numerical examples.The method is easy to implement and suitable for parallel computing.展开更多
In this paper, the stability analysis for parallel real-time digital simulation models is discussed. The coupling coefficient perturbation method and the simulation stepsize perturbation method are established. For tw...In this paper, the stability analysis for parallel real-time digital simulation models is discussed. The coupling coefficient perturbation method and the simulation stepsize perturbation method are established. For two classes of systems of test equations, we construct the parallel simulation models and prove that they have the stability behaviour which is similar to the original continuous systems.展开更多
A class of parallel implicit Runge-Kutta formulas is constructed for multiprocessor system. A family of parallel implicit two-stage fourth order Runge-Kutta formulas is given. For these formulas, the convergence is pr...A class of parallel implicit Runge-Kutta formulas is constructed for multiprocessor system. A family of parallel implicit two-stage fourth order Runge-Kutta formulas is given. For these formulas, the convergence is proved and the stability analysis is given. The numerical examples demonstrate that these formulas can solve an extensive class of initial value problems for the ordinary differential equations.展开更多
The multisplitting algorithm for solving large systems of ordinary differential equations on parallel computers was introduced by Jeltsch and Pohl in [1]. On fixed time intervals conver gence results could be derived ...The multisplitting algorithm for solving large systems of ordinary differential equations on parallel computers was introduced by Jeltsch and Pohl in [1]. On fixed time intervals conver gence results could be derived if the subsystems are solving exactly.Firstly,in theis paper,we deal with an extension of the waveform relaxation algorithm by us ing multisplittin AOR method based on an overlapping block decomposition. We restricted our selves to equidistant timepoints and dealed with the case that an implicit integration method was used to solve the subsystems numerically in parallel. Then we have proved convergence of multi splitting AOR waveform relaxation algorithm on a fixed window containing a finite number of timepoints.展开更多
Presents a class of modified parallel Rosenbrock methods (MPROW) which possesses more free parameters to improve further the various properties of the methods and will be similarly written as MPROW. Information on par...Presents a class of modified parallel Rosenbrock methods (MPROW) which possesses more free parameters to improve further the various properties of the methods and will be similarly written as MPROW. Information on parallel Rosenbrock methods; Convergence and stability analysis; Discussion on two-stage third-order methods.展开更多
基金the National Natural Science Foundation of China(No.70 0 710 42 and No.60 0 73 0 43 )
文摘We introduce a new parallel evolutionary algorithm in modeling dynamic systems by nonlinear higher-order ordinary differential equations (NHODEs). The NHODEs models are much more universal than the traditional linear models. In order to accelerate the modeling process, we propose and realize a parallel evolutionary algorithm using distributed CORBA object on the heterogeneous networking. Some numerical experiments show that the new algorithm is feasible and efficient.
文摘In this paper,we have proposed a numerical method for Singularly Perturbed Boundary Value Problems(SPBVPs)of convection-diffusion type of third order Ordinary Differential Equations(ODEs)in which the SPBVP is reduced into a weakly coupled system of two ODEs subject to suitable initial and boundary conditions.The numerical method combines boundary value technique,asymptotic expansion approximation,shooting method and finite difference scheme.In order to get a numerical solution for the derivative of the solution,the domain is divided into two regions namely inner region and outer region.The shooting method is applied to the inner region while standard finite difference scheme(FD)is applied for the outer region.Necessary error estimates are derived for the method.Computational efficiency and accuracy are verified through numerical examples.The method is easy to implement and suitable for parallel computing.
基金This work is supported partly by the National Natural Science Foundation of China
文摘In this paper, the stability analysis for parallel real-time digital simulation models is discussed. The coupling coefficient perturbation method and the simulation stepsize perturbation method are established. For two classes of systems of test equations, we construct the parallel simulation models and prove that they have the stability behaviour which is similar to the original continuous systems.
基金Project supported by the National Natural Science Foundation of China
文摘A class of parallel implicit Runge-Kutta formulas is constructed for multiprocessor system. A family of parallel implicit two-stage fourth order Runge-Kutta formulas is given. For these formulas, the convergence is proved and the stability analysis is given. The numerical examples demonstrate that these formulas can solve an extensive class of initial value problems for the ordinary differential equations.
文摘The multisplitting algorithm for solving large systems of ordinary differential equations on parallel computers was introduced by Jeltsch and Pohl in [1]. On fixed time intervals conver gence results could be derived if the subsystems are solving exactly.Firstly,in theis paper,we deal with an extension of the waveform relaxation algorithm by us ing multisplittin AOR method based on an overlapping block decomposition. We restricted our selves to equidistant timepoints and dealed with the case that an implicit integration method was used to solve the subsystems numerically in parallel. Then we have proved convergence of multi splitting AOR waveform relaxation algorithm on a fixed window containing a finite number of timepoints.
文摘Presents a class of modified parallel Rosenbrock methods (MPROW) which possesses more free parameters to improve further the various properties of the methods and will be similarly written as MPROW. Information on parallel Rosenbrock methods; Convergence and stability analysis; Discussion on two-stage third-order methods.