期刊文献+
共找到6,715篇文章
< 1 2 250 >
每页显示 20 50 100
Two stages of subsidence and its formation mechanisms in Mid-Late Triassic Ordos Basin,NW China
1
作者 DENG Xiuqin CHU Meijuan +2 位作者 WANG Long CHEN Xiu WANG Yanxin 《Petroleum Exploration and Development》 SCIE 2024年第3期576-588,共13页
Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two import... Based on a large number of newly added deep well data in recent years,the subsidence of the Ordos Basin in the Mid-Late Triassic is systematically studied,and it is proposed that the Ordos Basin experienced two important subsidence events during this depositional period.Through contrastive analysis of the two stages of tectonic subsidence,including stratigraphic characteristics,lithology combination,location of catchment area and sedimentary evolution,it is proposed that both of them are responses to the Indosinian Qinling tectonic activity on the edge of the craton basin.The early subsidence occurred in the Chang 10 Member was featured by high amplitude,large debris supply and fast deposition rate,with coarse debris filling and rapid subsidence accompanied by rapid accumulation,resulting in strata thickness increasing from northeast to southwest in wedge-shape.The subsidence center was located in Huanxian–Zhenyuan–Qingyang–Zhengning areas of southwestern basin with the strata thickness of 800–1300 m.The subsidence center deviating from the depocenter developed multiple catchment areas,until then,unified lake basin has not been formed yet.Under the combined action of subsidence and Carnian heavy rainfall event during the deposition period of Chang 7 Member,a large deep-water depression was formed with slow deposition rate,and the subsidence center coincided with the depocenter basically in the Mahuangshan–Huachi–Huangling areas.The deep-water sediments were 120–320 m thick in the subsidence center,characterized by fine grain.There are differences in the mechanism between the two stages of subsidence.The early one was the response to the northward subduction of the MianLüe Ocean and intense depression under compression in Qinling during Mid-Triassic.The later subsidence is controlled by the weak extensional tectonic environment of the post-collision stage during Late Triassic. 展开更多
关键词 ordos basin Chang 10 Member Chang 7 Member subsidence center depocenter subsidence mechanism Qinling orogenic belt Indosinian movement
下载PDF
Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation,Ordos Basin,NW China
2
作者 ZHAO Zhe XU Wanglin +8 位作者 ZHAO Zhenyu YI Shiwei YANG Wei ZHANG Yueqiao SUN Yuanshi ZHAO Weibo SHI Yunhe ZHANG Chunlin GAO Jianrong 《Petroleum Exploration and Development》 SCIE 2024年第2期262-278,共17页
To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro... To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China. 展开更多
关键词 coal rock gas coalbed methane medium-to-high rank coal CLEAT ordos basin Carboniferous Benxi Formation risk exploration
下载PDF
Reservoir characteristics and formation model of Upper Carboniferous bauxite series in eastern Ordos Basin,NW China
3
作者 LI Yong WANG Zhuangsen +2 位作者 SHAO Longyi GONG Jiaxun WU Peng 《Petroleum Exploration and Development》 SCIE 2024年第1期44-53,共10页
Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact... Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems. 展开更多
关键词 North China Craton eastern ordos basin Upper Carboniferous bauxite series reservoir characteristics formation model gas accumulation
下载PDF
Tracing of natural gas migration by light hydrocarbons:A case study of the Dongsheng gas field in the Ordos Basin,NW China
4
作者 WU Xiaoqi NI Chunhua +3 位作者 MA Liangbang WANG Fubin JIA Huichong WANG Ping 《Petroleum Exploration and Development》 SCIE 2024年第2期307-319,共13页
Based on the analysis of light hydrocarbon compositions of natural gas and regional comparison in combination with the chemical components and carbon isotopic compositions of methane,the indication of geochemical char... Based on the analysis of light hydrocarbon compositions of natural gas and regional comparison in combination with the chemical components and carbon isotopic compositions of methane,the indication of geochemical characteristics of light hydrocarbons on the migration features,dissolution and escape of natural gas from the Dongsheng gas field in the Ordos Basin is revealed,and the effect of migration on specific light hydrocarbon indexes is further discussed.The study indicates that,natural gas from the Lower Shihezi Formation(Pix)in the Dongsheng gas field displays higher iso-C5-7contents than n-C5-7contents,and the C6-7light hydrocarbons are composed of paraffins with extremely low aromatic contents(<0.4%),whereas the C7light hydrocarbons are dominated by methylcyclohexane,suggesting the characteristics of coal-derived gas with the influence by secondary alterations such as dissolution.The natural gas from the Dongsheng gas field has experienced free-phase migration from south to north and different degrees of dissolution after charging,and the gas in the Shiguhao area to the north of the Borjianghaizi fault has experienced apparent diffusion loss after accumulation.Long-distance migration in free phase results in the decrease of the relative contents of the methylcyclohexane in C7 light hydrocarbons and the toluene/n-heptane ratio,as well as the increase of the n-heptane/methylcyclohexane ratio and heptane values.The dissolution causes the increase of isoheptane values of the light hydrocarbons,whereas the diffusion loss of natural gas in the Shiguhao area results in the increase of n-C5-7contents compared to the iso-C5-7contents. 展开更多
关键词 ordos basin Dongsheng gas field Permian Lower Shihezi Formation light hydrocarbon compounds MATURITY natural gas origin migration phase state diffusion loss
下载PDF
Extreme massive hydraulic fracturing in deep coalbed methane horizontal wells:A case study of the Linxing Block,eastern Ordos Basin,NW China
5
作者 YANG Fan LI Bin +3 位作者 WANG Kunjian WEN Heng YANG Ruiyue HUANG Zhongwei 《Petroleum Exploration and Development》 SCIE 2024年第2期440-452,共13页
Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the... Deep coal seams show low permeability,low elastic modulus,high Poisson’s ratio,strong plasticity,high fracture initiation pressure,difficulty in fracture extension,and difficulty in proppants addition.We proposed the concept of large-scale stimulation by fracture network,balanced propagation and effective support of fracture network in fracturing design and developed the extreme massive hydraulic fracturing technique for deep coalbed methane(CBM)horizontal wells.This technique involves massive injection with high pumping rate+high-intensity proppant injection+perforation with equal apertures and limited flow+temporary plugging and diverting fractures+slick water with integrated variable viscosity+graded proppants with multiple sizes.The technique was applied in the pioneering test of a multi-stage fracturing horizontal well in deep CBM of Linxing Block,eastern margin of the Ordos Basin.The injection flow rate is 18 m^(3)/min,proppant intensity is 2.1 m^(3)/m,and fracturing fluid intensity is 16.5 m^(3)/m.After fracturing,a complex fracture network was formed,with an average fracture length of 205 m.The stimulated reservoir volume was 1987×10^(4)m^(3),and the peak gas production rate reached 6.0×10^(4)m^(3)/d,which achieved efficient development of deep CBM. 展开更多
关键词 deep coalbed methane extreme massive hydraulic fracturing fracture network graded proppants slick water with variable viscosity ordos basin
下载PDF
Main controlling factors and exploration enlightenment of aluminous rock series gas reservoirs in Ordos Basin,NW China
6
作者 ZHANG Lei CAO Qian +7 位作者 ZHANG Caili ZHANG Jianwu WEI Jiayi LI Han WANG Xingjian PAN Xing YAN Ting QUAN Haiqi 《Petroleum Exploration and Development》 SCIE 2024年第3期621-633,共13页
Based on the data of outcrop,core,logging,gas testing,and experiments,the natural gas accumulation and aluminous rock mineralization integrated research was adopted to analyze the controlling factors of aluminous rock... Based on the data of outcrop,core,logging,gas testing,and experiments,the natural gas accumulation and aluminous rock mineralization integrated research was adopted to analyze the controlling factors of aluminous rock series effective reservoirs in the Ordos Basin,NW China,as well as the configuration of coal-measure source rocks and aluminous rock series reservoirs.A natural gas accumulation model was constructed to evaluate the gas exploration potential of aluminous rock series under coal seam in the basin.The effective reservoirs of aluminous rock series in the Ordos Basin are composed of honeycomb-shaped bauxites with porous residual pisolitic and detrital structures,with the diasporite content of greater than 80%and dissolved pores as the main storage space.The bauxite reservoirs are formed under a model that planation controls the material supply,karst paleogeomorphology controls diagenesis,and land surface leaching improves reservoir quality.The hot humid climate and sea level changes in the Late Carboniferous–Early Permian dominated the development of a typical coal-aluminum-iron three-stage stratigraphic structure.The natural gas generated by the extensive hydrocarbon generation of coal-measure source rocks was accumulated in aluminous rock series under the coal seam,indicating a model of hydrocarbon accumulation under the source.During the Upper Carboniferous–Lower Permian,the relatively low-lying area on the edge of an ancient land or island in the North China landmass was developed.The gas reservoirs of aluminous rock series,which are clustered at multiple points in lenticular shape,are important new natural gas exploration fields with great potential in the Upper Paleozoic of North China Craton. 展开更多
关键词 ordos basin Carboniferous Benxi Formation Permian Taiyuan Formation aluminous rock series coal-aluminum-iron three-stage stratigraphic structure hydrocarbon accumulation under source
下载PDF
Characteristics and genetic mechanism of the Mesoproterozoic rift system,Ordos Basin,China
7
作者 Meng Li Xiangbin Yan +4 位作者 Wei Zhang Yuanling Guo Chaoying Liu Lingling Fan Shuang Yang 《Energy Geoscience》 EI 2024年第1期141-152,共12页
The Mesoproterozoic rifts are developed in the Ordos Basin located in the western margin of the North China Plate.Based on the latest 3D seismic data and previous research results,this study intends to discuss the zon... The Mesoproterozoic rifts are developed in the Ordos Basin located in the western margin of the North China Plate.Based on the latest 3D seismic data and previous research results,this study intends to discuss the zonal differential deformation characteristics and genetic mechanism of the Mesoproterozoic rifts in the Ordos Basin.NE-trending rifts are developed in the Mesoproterozoic in the south-central Ordos Basin,the main part of which are located near the western margin of the North China Plate.NNW-trending rifts are developed in the north of the basin,while NW-NNW rifts in the Mesoproterozoic in Hangjinqi area.The genetic mechanism of the Mesoproterozoic rifts is related to regional extensional stress field,plate boundary conditions and internal preexisting structures.The main extensional stress direction strikes NWW-SSE(120°)in the western margin of the North China Plate,based on the forward rift trend of the northern Mesoproterozoic.In Hangjinqi area,the reactivation of the existing NWtrending Wulansu fault and NW-NW-trending Daolao fault,results in dextral shear stress field.The boundary between the western margin of the North China Plate and its adjacent plates forms a nearly NS-trending preexisting basement tectonic belt,which intersects with the NWW-SSE(120°)extensional stress at an acute angle of 60°.Therefore,the western margin of the North China Plate is formed by oblique normal faults under oblique extension.Due to the long time span of Columbia Supercontinent breakup(1.8e1.6 Ga),the oblique rift in the south-central Ordos Basin is formed under the continuous oblique extension at the western margin of the North China Plate. 展开更多
关键词 Columbia Supercontinent ordos basin Rift system MESOPROTEROZOIC Genetic mechanism
下载PDF
Ordovician reservoirs in Fuxian area:Gas accumulation patterns and their implications for the exploration of lower Paleozoic carbonates in the southern Ordos Basin
8
作者 Ning Gu Juntao Zhang +2 位作者 Xiaohui Jin Fei Yang Lu Liu 《Energy Geoscience》 EI 2024年第1期63-71,共9页
In recent years,the Fuxian area in the southeastern Ordos Basin has undergone significant exploration,with industrial gas flow tested in wells drilled into the Ordovician marine carbonates.Despite this,the gas accumul... In recent years,the Fuxian area in the southeastern Ordos Basin has undergone significant exploration,with industrial gas flow tested in wells drilled into the Ordovician marine carbonates.Despite this,the gas accumulation patterns of this area are not fully understood,posing challenges for further exploration.Our analysis of geological conditions indicates that the Ordovician Majiagou Formation in this area hosts two gas plays:one found in weathering crusts and the other found in interior of the formation.We investigated various typical gas reservoirs in the area,focusing on differentiating the geological conditions and factors controlling gas accumulation in the weathering-crust and interior gas reservoirs.The results suggest three primary gas accumulation patterns in the Majiagou Formation in the Fuxian area:(1)upper gas accumulation in weathering crusts,present in the high parts of landforms such as residual paleo-hills or buried paleo-platform(Pattern I);(2)the stereoscopic pattern with gas accumulation in both weathering crusts and strata interior,arising in high parts of landforms such as residual paleo-hills or buried paleo-platforms(Pattern II);(3)lower gas accumulation in strata interior,occurring in the upper reaches and on both sides of paleo-trenches(Pattern III).This study will serve as a geological basis for future exploration deployment in the Fuxian area. 展开更多
关键词 Gas accumulation ordoVICIAN Weathering crust play Interior play Fuxian area The ordos basin
下载PDF
Fault characteristics and their control on oil and gas accumulation in the southwestern Ordos Basin
9
作者 Yongtao Liu Shuanghe Dai +7 位作者 Yijun Zhou Fufeng Ding Mingjie Li Xingyun Li Yu Zhao Binhua Guo Tong Li Junan Han 《Energy Geoscience》 EI 2024年第1期162-171,共10页
3D seismic data recently acquired from the Ordos Basin shows three sets of regularly distributed fault systems,which overrides previous understanding that no faults were developed in this basin.Seismic interpretation ... 3D seismic data recently acquired from the Ordos Basin shows three sets of regularly distributed fault systems,which overrides previous understanding that no faults were developed in this basin.Seismic interpretation suggests that the faults in the southwestern Ordos Basin have three basic characteristics,namely extreme micro-scale,distinct vertical stratification,and regularity of planar distribution.These NS-,NW-,and NE-trending fault systems developed in the Meso-Neoproterozoic e Lower Ordovician strata.Of these,the NS-trending fault system mainly consists of consequent and antithetic faults which show clear syndepositional deformation.The fault systems in the Carboniferous e Middle-Lower Triassic strata are not clear on seismic reflection profiles.The NW-and NE-trending fault systems are developed in the Upper Triassic e Middle Jurassic strata.Of these,the NW-trending fault system appears as a negative flower structure in sectional view and in an en echelon pattern in plan-view;they show transtensional deformation.A NE-trending fault system that developed in the Lower Cretaceous e Cenozoic strata shows a Y-shaped structural style and tension-shear properties.A comprehensive analysis of the regional stress fields at different geologic times is essential to determine the development,distribution direction,and intensity of the activity of fault systems in the Ordos Basin.Current exploration suggests three aspects in which the faults within the Ordos Basin are crucial to oil and gas accumulation.Firstly,these faults serve as vertical barriers that cause the formation of two sets of relatively independent petroleum systems in the Paleozoic and Mesozoic strata respectively;this is the basis for the‘upper oil and lower gas’distribution pattern.Secondly,the vertical communication of these faults is favorable for oil and gas migration,thus contributing to the typical characteristics of multiple oil and gas fields within the basin,i.e.oil and gas reservoirs with multiple superimposed strata.Finally,these faults and their associated fractures improve the permeability of Mesozoic tight reservoirs,providing favorable conditions for oil enrichment in areas around the fault systems. 展开更多
关键词 Coherent attribute Strike-slip fault Flower structure Shale oil ordos basin
下载PDF
Potential evaluation of saline aquifers for the geological storage of carbon dioxide: A case study of saline aquifers in the Qian-5 member in northeastern Ordos Basin
10
作者 Yan Li Peng Li +4 位作者 Hong-jun Qu Gui-wen Wang Xiao-han Sun Chang Ma Tian-xing Yao 《China Geology》 CAS CSCD 2024年第1期12-25,共14页
The well-developed coal electricity generation and coal chemical industries have led to huge carbon dioxide(CO_(2))emissions in the northeastern Ordos Basin.The geological storage of CO_(2) in saline aquifers is an ef... The well-developed coal electricity generation and coal chemical industries have led to huge carbon dioxide(CO_(2))emissions in the northeastern Ordos Basin.The geological storage of CO_(2) in saline aquifers is an effective backup way to achieve carbon neutrality.In this case,the potential of saline aquifers for CO_(2) storage serves as a critical basis for subsequent geological storage project.This study calculated the technical control capacities of CO_(2) of the saline aquifers in the fifth member of the Shiqianfeng Formation(the Qian-5 member)based on the statistical analysis of the logging and the drilling and core data from more than 200 wells in the northeastern Ordos Basin,as well as the sedimentary facies,formation lithology,and saline aquifer development patterns of the Qian-5 member.The results show that(1)the reservoirs of saline aquifers in the Qian-5 member,which comprise distributary channel sand bodies of deltaic plains,feature low porosities and permeabilities;(2)The study area hosts three NNE-directed saline aquifer zones,where saline aquifers generally have a single-layer thickness of 3‒8 m and a cumulative thickness of 8‒24 m;(3)The saline aquifers of the Qian-5 member have a total technical control capacity of CO_(2) of 119.25×10^(6) t.With the largest scale and the highest technical control capacity(accounting for 61%of the total technical control capacity),the Jinjie-Yulin saline aquifer zone is an important prospect area for the geological storage of CO_(2) in the saline aquifers of the Qian-5 member in the study area. 展开更多
关键词 Carbon burial Carbon neutral CO_(2) storage in saline aquifer Distributary channel sand body Potential evaluation Technical control capacity CO_(2)geological storage engineering ordos basin
下载PDF
Characteristics and control factors of feldspar dissolution in gravity flow sandstone of Chang 7 Member,Triassic Yanchang Formation,Ordos Basin,NW China
11
作者 ZHU Haihua ZHANG Qiuxia +4 位作者 DONG Guodong SHANG Fei ZHANG Fuyuan ZHAO Xiaoming ZHANG Xi 《Petroleum Exploration and Development》 SCIE 2024年第1期114-126,共13页
To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb... To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly. 展开更多
关键词 gravity flow sandstone differential feldspar dissolution mica-feldspar dissolution experiment Chang 7 Member of Triassic Yanchang Formation ordos basin
下载PDF
Experimental analysis of matrix moveable oil saturation in tight sandstone reservoirs of the south Ordos Basin,China
12
作者 Ting Xu Jun Pu +1 位作者 Xuejie Qin YiWei 《Energy Geoscience》 EI 2024年第1期184-195,共12页
Tight oil reservoirs in the south Ordos Basin are characterized by fractured,heterogeneous oil-bearing strata(an oil saturation of less than 55%on average),normal pressure(0.8±)and extra-low permeability(less tha... Tight oil reservoirs in the south Ordos Basin are characterized by fractured,heterogeneous oil-bearing strata(an oil saturation of less than 55%on average),normal pressure(0.8±)and extra-low permeability(less than 0.3 mD).In the Chang 8 tight sandstone reservoir in Honghe oilfield,micro-and nanopores,especially those with a pore-throat radius of less than 1 mm,account for more than 90%.Fluid flow in the matrix is non-linear and crude oil flow rates are very low under normal pressure gradients.An improved understanding of oil mobility in a tight matrix is key to further development of normalpressure tight-oil resources in the continental basin.In this study,constant-velocity and high-pressure mercury injection experiments were conducted using samples of typical tight sandstone cores obtained from the south of Ordos Basin.A new method for reconstructing the full-scale pore-throat distribution characteristics of tight sandstone reservoirs was established successfully,based on which multistage centrifugal tests,tests of low-pressure differential displacement of oil by water,and nuclear magnetic resonance tests were conducted in order to obtain the distribution characteristics of moveable fluid in different pores.The moveable oil saturation(MOS)and degree of oil recovery(i.e.ratio of accumulative oil production to producing geologic reserves)of the core samples under different differential pressures for displacement were determined.As for the tight oil reservoirs in the south Ordos Basin,the moveable fluids are mainly stored in sub-micron(0.10-0.5 mm)pores.For Type I reservoirs(k>0.1 mD),the volume percentage of moveable fluid in pores with a radius larger than 0.5 mm is relatively high(greater than 40%).The degree of oil recovery of water flooding serves as the basis for forecasting recoverable reserves for tight oil reservoirs.Recoverable reserves under water flooding,mainly occur in pores with a radius greater than 0.5 mm.The contribution of Type I reserves to oil production is observed to be greater than 60%,and the degree of oil recovery reaches up to 17.1%.These results help improve our understanding on the evaluation and classification of Chang 8 tight sandstone reservoirs in Honghe oilfield and serve as theoretical basis for pilot tests to explore effective injection media and development methods to improve the matrix-driven pressure differences and displacement efficiency for oil. 展开更多
关键词 Tight reservoir Pore-throat structure Moveable fluid volume Moveable oil saturation(MOS) Waterflooding oil recovery South ordos basin
下载PDF
The formation and evolutionary characteristics of organic matter and pyrites in the continental shales of the 3^(rd)submember of Chang 7 Member,Yanchang formation,Ordos Basin,China
13
作者 Ruikang Bian 《Energy Geoscience》 EI 2024年第2期31-39,共9页
Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval anal... Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval analyses,this study systematically investigated the organic matter and pyrites in the continental shales in the 3^(rd)submember of the Chang 7 Member(Chang 7^(3)submember)in the Yanchang Formation,Ordos Basin and determined their types and the formation and evolutionary characteristics.The results are as follows.The organic matter of the continental shales in the Chang 7^(3)submember is dominated by amorphous bituminites and migrabitumens,which have come into being since the early diagenetic stage and middle diagenetic stage A,respectively.The formation and transformation of organic matter is a prerequisite for the formation of pyrites.The Ordos Basin was a continental freshwater lacustrine basin and lacked sulphates in waters during the deposition of the Chang 7 Member.Therefore,the syndiagenetic stage did not witness the formation of large quantities of pyrites.Since the basin entered early diagenetic stage A,large quantities of sulfur ions were released as the primary organic matter got converted into bituminites and,accordingly,pyrites started to form.However,this stage featured poorer fluid and spatial conditions compared with the syndepositional stage due to withdraw of water,the partial formation of bituminites,and a certain degree of compaction.As a result,large quantities of pyrrhotite failed to transition into typical spherical framboidal pyrites but grew into euhedral monocrystal aggregates.In addition,pyrites are still visible in the migrabitumens in both microfractures and inorganic pores of mudstones and shales,indicating that the pyrite formation period can extend until the middle diagenetic stage A. 展开更多
关键词 Organic matter Pyrite Formation and evolution Continental shale Chang 7^(3)submember ordos basin
下载PDF
Dynamic evaluation on sealing capacity of caprocks of the Meso-Neoproterozoic reservoirs in Ordos Basin,China
14
作者 Yusong Yuan Yunqin Hao Rongqiang Zhang 《Energy Geoscience》 EI 2024年第1期99-107,共9页
The Meso-Neoproterozoic is a new play in the Ordos Basin.A deeper understanding about the dynamic relationship between the caprocks and the source rocks is needed.Based on the comprehensive analysis of hydrocarbon sou... The Meso-Neoproterozoic is a new play in the Ordos Basin.A deeper understanding about the dynamic relationship between the caprocks and the source rocks is needed.Based on the comprehensive analysis of hydrocarbon source development characteristics of the Meso-Neoproterozoic and its overlying strata,as well as the formation contact relationships,lithology characteristics and exploratory drilling data,it is recognized that the Meso-Neoproterozoic contains two types of petroleum accumulation assemblage,that is,the“self-sourced indigenous”and“upper source rock-lower reservoir”assemblages.The former is mainly controlled by the development and distribution of source rocks of the Changcheng System,with the Lower Cambrian shale sequence as its caprock.The later is controlled by the superposition between the Meso-Neoproterozoic and its overlying source rocks and this assemblage is mainly distributed in Hangjinqi and Pingliang areas with the Carboniferous-Permian shale sequence as its caprock.The dynamic evaluation on the displacement pressure serves to reconstruct the displacement pressure history of the caprock.The results show that the shale sequence of the Cambrian Maozhuang Formation in well XY 1 in the southern Ordos Basin has possibly acquired the ability of sealing natural gas since the early of Late Triassic.Its displacement pressure increased rapidly up to 20 MPa during the Late Triassic-Jurassic and keeps at 9.2 MPa at present,indicating fair sealing ability.The Carboniferous-Permian caprocks in Hangjinqi area could have acquired the ability to seal natural gas in the Late Jurassic-Early Cretaceous,and the present-day displacement pressure is 9e12 MPa,indicating good sealing ability.The upper Paleozoic caprock in Pingliang area has been able to seal natural gas since the Early Jurassic,with a maximum displacement pressure of 23 MPa during the Cretaceous period and a current value of 17 e20 MPa,indicative of strong ability to seal natural gas.The sealing ability of caprocks of both the“selfsourced indigenous”and“upper source rock-lower reservoir”assemblages has come into being earlier than or at least no later than the peak gas generation of the source rocks and therefore the caprocks are dynamically effective in geohistory.The Meso-Neoproterozoic reservoirs in the Ordos Basin are well preserved and probabally of better potential for exploration in terms of the caprock-source rock combination. 展开更多
关键词 ordos basin MESO-NEOPROTEROZOIC Caprock sealing ability Displacement pressure
下载PDF
Evaluation of Chang 2 Reservoir in Zichang Area, Ordos Basin
15
作者 Zhiwei Du Zhaoyong Ping Feng Chen 《Journal of Geoscience and Environment Protection》 2024年第4期1-11,共11页
In this paper, the Chang 2 reservoir in Zichang Area of Ordos Basin, the second largest sedimentary basin in China, is classified and evaluated by using logging and core data, thin section identification and electron ... In this paper, the Chang 2 reservoir in Zichang Area of Ordos Basin, the second largest sedimentary basin in China, is classified and evaluated by using logging and core data, thin section identification and electron microscopy. The main sedimentary microfacies of Chang 2<sub>1</sub><sup>3</sup> is braided river delta sedimentary system in geological history, and there are three main sedimentary microfacies types: swamp microfacies, distributary channel microfacies and natural embankment microfacies on land. The heterogeneity in the study area is as follows: Chang 2<sub>1</sub><sup>2</sup> formation has the strongest heterogeneity, followed by Chang 2<sub>1</sub><sup>1</sup> formation with strong heterogeneity, and finally Chang 2<sub>1</sub><sup>3</sup> formation with medium heterogeneity. The reservoirs of Chang 2 member in the study area are dominated by III<sub>a</sub>, II<sub>b</sub> and III<sub>b</sub>, and the reservoirs are mainly composed of ultra-low porosity and low permeability reservoirs and low porosity and low permeability reservoirs. 展开更多
关键词 Zichang Area Sedimentary Microfacies Reservoir Assessment ordos basin
下载PDF
High Resolution ID-TIMS Redefines the Distribution and Age of the Main Mesozoic Lacustrine Hydrocarbon Source Rocks in the Ordos Basin,China 被引量:1
16
作者 CUI Jingwei ZHU Rukai +2 位作者 ZHANG Zhongyi Jahandar RAMEZANI LI Yang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2023年第2期581-588,共8页
Using high-precision zircon U-Pb ID-TIMS geochronology,tuffs from the Chang 9 shale and the Chang 7 shale were dated.The tuff in the Chang 9 shale is 241.47±0.17 Ma,which falls between the top tuff age of 241.06&... Using high-precision zircon U-Pb ID-TIMS geochronology,tuffs from the Chang 9 shale and the Chang 7 shale were dated.The tuff in the Chang 9 shale is 241.47±0.17 Ma,which falls between the top tuff age of 241.06±0.12 Ma and the bottom tuff age of 241.558±0.093 Ma in the Chang 7 shale.These reveal that the Chang 9 and Chang 7 shales are contemporaneous,belonging to the Ladinian stage of the Middle Triassic.This insight expands the region of the main source rock of Chang 7 to the northeast and will inform the search for the deep Chang 9 shale petroleum system,increasing the scope for exploring the Chang 7 shale system in northern Shaanxi.The research results clarify the relationship between the two sets of shale in the Yanchang Formation and redefine the distribution range of the Chang 7 shale in the Ordos Basin.At the same time,it shows that there is a cross-layer problem in the stratigraphic division of the Yanchang Formation in different regions,the high-precision U-Pb dating technology providing a reference for the fine stratigraphic correlation of other continental basins in the world. 展开更多
关键词 ID-TIMS high precision age redefining distribution Chang 7 shale Chang 9 shale ordos basin
下载PDF
Types,characteristics and geological significance of event deposits of Chang 9 Member of Triassic Yanchang Formation in southwestern Ordos Basin,NW China 被引量:1
17
作者 WANG Ziye MAO Zhiguo +4 位作者 YUAN Xuanjun DENG Xiuqin HUI Xiao ZHANG Zhongyi CUI Jingweil 《Petroleum Exploration and Development》 SCIE 2023年第3期588-602,共15页
Through core observation,thin section identification,and logging and testing data analysis,the types and characteristics of event deposits in the ninth member of Yanchang Formation of Triassic(Chang 9 Member)in southw... Through core observation,thin section identification,and logging and testing data analysis,the types and characteristics of event deposits in the ninth member of Yanchang Formation of Triassic(Chang 9 Member)in southwestern Ordos Basin,China,are examined.There are 4 types and 9 subtypes of event deposits,i.e.earthquake,gravity flow,volcanic and anoxic deposits,in the Chang 9 Member in the study area.Based on the analysis of the characteristics and distribution of such events deposits,it is proposed that the event deposits are generally symbiotic or associated,with intrinsic genetic relations and distribution laws.Five kinds of sedimentary microfacies with relatively developed event deposits are identified,and the genetic model of event deposits is discussed.Seismites are mainly developed in the lake transgression stage when the basin expands episodically,and commonly affected by liquefaction flow,gravity action and brittle shear deformation.Gravity flow,mainly distributed in the high water level period,sandwiched in the fine-grained sediments of prodelta or semi-deep lake,or creates banded or lobate slump turbidite fan.It is relatively developed above the seismites strata.The volcanic event deposits are only seen in the lower part of the Chang 9 Member,showing abrupt contact at the top and bottom,which reflects the volcanic activity at the same time.Anoxic deposits are mostly formed in the late stage of lake transgression to the highstand stage.Very thick organic-rich shales are developed in the highstand stage of Chang 9 Member,and the event deposits in the depositional period of these shales are conducive to potential reservoirs. 展开更多
关键词 event deposit SEISMITE gravity flow anoxic event Triassic Yanchang Formation ordos basin
下载PDF
Characteristics and exploration targets of Chang 7 shale oil in Triassic Yanchang Formation, Ordos Basin, NW China 被引量:1
18
作者 GUO Qiheng LI Shixiang +2 位作者 JIN Zhenkui ZHOU Xinping LIU Chenglin 《Petroleum Exploration and Development》 SCIE 2023年第4期878-893,共16页
The geological characteristics and enrichment laws of the shale oil in the third submember of the seventh member of Triassic Yanchang Formation(Chang 7_(3)) in the Ordos Basin were analyzed by using the information of... The geological characteristics and enrichment laws of the shale oil in the third submember of the seventh member of Triassic Yanchang Formation(Chang 7_(3)) in the Ordos Basin were analyzed by using the information of core observations, experiments and logging, and then the exploration potential and orientation of the Chang 7_(3) shale oil were discussed. The research findings are obtained in three aspects. First, two types of shale oil, i.e. migratory-retained and retained, are recognized in Chang 7_(3). The former is slightly better than the latter in quality. The migratory-retained shale oil reservoir is featured with the frequent interbedding and overlapping of silty-sandy laminae caused by sandy debris flow and low-density turbidity current and semi-deep-deep lacustrine organic-rich shale laminae. The retained shale oil reservoir is composed of black shale with frequent occurrence of bedding and micro-laminae. Second, high-quality source rocks provide a large quantity of hydrocarbon-rich high-quality fluids with high potential energy. The source-reservoir pressure difference provides power for oil accumulation in thin interbeds of organic-poor sandstones with good seepage conditions and in felsic lamina, tuffaceous lamina and bedding fractures in shales. Hydrocarbon generation-induced fractures, bedding fractures and microfractures provide high-speed pathways for oil micro-migration. Frequent sandstone interlayers and felsic laminae provide a good space for large-scale hydrocarbon accumulation, and also effectively improve the hydrocarbon movability. Third, sand-rich areas around the depression are the main targets for exploring migratory-retained shale oil. Mature deep depression areas are the main targets for exploring retained oil with medium to high maturity. Theoretical research and field application of in-situ conversion in low-mature deep depression areas are the main technical orientations for exploring retained shale oil with low to medium maturity. 展开更多
关键词 ordos basin Triassic Yanchang Formation Chang 7_(3)submember shale oil migratory-retained RETAINED exploration target
下载PDF
Organic matter pores in the chang 7 lacustrine shales from the Ordos Basin and its effect on reflectance measurement
19
作者 Peng Pang Hui Han +7 位作者 Xiu-Cheng Tan Shi-Meng Ren Chen Guo Lin Xie Ling-Li Zheng Hai-Hua Zhu Yuan Gao Yun-Hui Xie 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期60-86,共27页
To quantify the pore characteristics of various macerals in Chang 7 lacustrine shales,macerals were effectively identified according to their optical and morphological characteristics,and the nanoscale pore structure ... To quantify the pore characteristics of various macerals in Chang 7 lacustrine shales,macerals were effectively identified according to their optical and morphological characteristics,and the nanoscale pore structure of macerals was observed by scanning electron microscope.Meanwhile,the reflectances of different positions in the same pieces of vitrinite or solid bitumen with heterogeneous pores development were measured.The results showed that the average contents of sapropelinite,liptinite,vitrinite,inertinite and solid bitumen are 42.7%,8.7%,13.6%,13.8% and 21.2%,respectively,which suggests that the source of the organic matter of the Chang 7 shales is a mixed source input.The organic pores of Chang 7 shales are enriched,and the pore shapes are mostly round or elliptical.The pore size of organic pores has a wide distribution,mainly concentrate in the range of 100-400 nm,and the average plane porosity of organic pores is 10.13%.The size order of the organic pores in various macerals is:solid bitumen<bituminite<alginite<vitrinite<fusinite<liptinite.The abundance order of organic matter pores of each maceral is as follows:alginite>fusinite>bituminite>solid bitumen>vitrinite>liptinite.OM pores are mainly contributed by bituminite,solid bitumen and fusinite.The plane porosity of bituminite increases with maturity.In the process of thermal evolution,the plane porosity of fusinite is distributed in the two ranges of 20%-28% and 1%-7%.The former is mainly the primary pores of the fusinite itself,and the latter is the secondary pores formed in the thermal evolution.As for the organic pores of other macerals,no obvious thermal evolution law was found.Meanwhile,the surface imperfections of vitrinite or solid bitumen is enhanced by the enrichment of organic pores(an increase in pore size or pore number),which may result in the underestimation of their reflectances. 展开更多
关键词 ordos basin Chang 7 member OM pore MACERALS Differential developmental characteristics Reflectance
下载PDF
Paleoenvironment reconstruction of the Middle Ordovician thick carbonate from western Ordos Basin, China
20
作者 Jia-Qi Yang Jun-Tao Zhang +1 位作者 Zhi-Liang He Tao Zhang 《Petroleum Science》 SCIE EI CAS CSCD 2023年第1期48-59,共12页
Reconstructing paleoenvironments has long been considered a vital component for understanding the development and evolution of carbonate reservoirs.The Middle Ordovician Period is considered the archetypical greenhous... Reconstructing paleoenvironments has long been considered a vital component for understanding the development and evolution of carbonate reservoirs.The Middle Ordovician Period is considered the archetypical greenhouse interval,and also a critical period in biological evolution.The Middle Darriwilian isotope carbon excursion has been observed in many areas of the world and may be related to the biological explosions caused by decreases in the temperature.The thick carbonate rocks in the fifth member of the Middle Ordovician Majiagou Formation in the Dingbei area of the Ordos Basin were chosen as an example,based on the concentration of major,trace and rare earth elements as well as C,O and Sr isotopic analyses,the paleoenvironment was reconstructed.And its impact on natural gas exploration was analyzed.The results show that the seawater paleotemperature was 29℃,suboxicanoxic paleoredox conditions were observed,and the seawater paleosalinity was high.A large number of plankton in the biological explosion caused a rapid increase in the total organic carbon in carbonate rocks,which provided natural gas as supplemental source rocks.Affected by early meteoric water,the dissolution of gypsum laid the foundation for high-quality reservoirs,and the residual gypsum also further preserved natural gas.This study provides new data for the paleoenvironment and a theoretical basis for further natural gas exploration. 展开更多
关键词 Middle darriwilian isotope carbon excursion PALEOENVIRONMENT Natural gas exploration Middle ordovician ordos basin
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部