期刊文献+
共找到2,287篇文章
< 1 2 115 >
每页显示 20 50 100
Characteristics and control factors of feldspar dissolution in gravity flow sandstone of Chang 7 Member,Triassic Yanchang Formation,Ordos Basin,NW China
1
作者 ZHU Haihua ZHANG Qiuxia +4 位作者 DONG Guodong SHANG Fei ZHANG Fuyuan ZHAO Xiaoming ZHANG Xi 《Petroleum Exploration and Development》 SCIE 2024年第1期114-126,共13页
To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb... To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly. 展开更多
关键词 gravity flow sandstone differential feldspar dissolution mica-feldspar dissolution experiment Chang 7 Member of Triassic yanchang formation ordos basin
下载PDF
Geological characteristics and exploration breakthroughs of coal rock gas in Carboniferous Benxi Formation,Ordos Basin,NW China
2
作者 ZHAO Zhe XU Wanglin +8 位作者 ZHAO Zhenyu YI Shiwei YANG Wei ZHANG Yueqiao SUN Yuanshi ZHAO Weibo SHI Yunhe ZHANG Chunlin GAO Jianrong 《Petroleum Exploration and Development》 SCIE 2024年第2期262-278,共17页
To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro... To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China. 展开更多
关键词 coal rock gas coalbed methane medium-to-high rank coal CLEAT ordos basin Carboniferous Benxi formation risk exploration
下载PDF
Reservoir characteristics and formation model of Upper Carboniferous bauxite series in eastern Ordos Basin,NW China
3
作者 LI Yong WANG Zhuangsen +2 位作者 SHAO Longyi GONG Jiaxun WU Peng 《Petroleum Exploration and Development》 SCIE 2024年第1期44-53,共10页
Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact... Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems. 展开更多
关键词 North China Craton eastern ordos basin Upper Carboniferous bauxite series reservoir characteristics formation model gas accumulation
下载PDF
Types,characteristics and geological significance of event deposits of Chang 9 Member of Triassic Yanchang Formation in southwestern Ordos Basin,NW China 被引量:1
4
作者 WANG Ziye MAO Zhiguo +4 位作者 YUAN Xuanjun DENG Xiuqin HUI Xiao ZHANG Zhongyi CUI Jingweil 《Petroleum Exploration and Development》 SCIE 2023年第3期588-602,共15页
Through core observation,thin section identification,and logging and testing data analysis,the types and characteristics of event deposits in the ninth member of Yanchang Formation of Triassic(Chang 9 Member)in southw... Through core observation,thin section identification,and logging and testing data analysis,the types and characteristics of event deposits in the ninth member of Yanchang Formation of Triassic(Chang 9 Member)in southwestern Ordos Basin,China,are examined.There are 4 types and 9 subtypes of event deposits,i.e.earthquake,gravity flow,volcanic and anoxic deposits,in the Chang 9 Member in the study area.Based on the analysis of the characteristics and distribution of such events deposits,it is proposed that the event deposits are generally symbiotic or associated,with intrinsic genetic relations and distribution laws.Five kinds of sedimentary microfacies with relatively developed event deposits are identified,and the genetic model of event deposits is discussed.Seismites are mainly developed in the lake transgression stage when the basin expands episodically,and commonly affected by liquefaction flow,gravity action and brittle shear deformation.Gravity flow,mainly distributed in the high water level period,sandwiched in the fine-grained sediments of prodelta or semi-deep lake,or creates banded or lobate slump turbidite fan.It is relatively developed above the seismites strata.The volcanic event deposits are only seen in the lower part of the Chang 9 Member,showing abrupt contact at the top and bottom,which reflects the volcanic activity at the same time.Anoxic deposits are mostly formed in the late stage of lake transgression to the highstand stage.Very thick organic-rich shales are developed in the highstand stage of Chang 9 Member,and the event deposits in the depositional period of these shales are conducive to potential reservoirs. 展开更多
关键词 event deposit SEISMITE gravity flow anoxic event Triassic yanchang formation ordos basin
下载PDF
Characteristics and exploration targets of Chang 7 shale oil in Triassic Yanchang Formation, Ordos Basin, NW China 被引量:1
5
作者 GUO Qiheng LI Shixiang +2 位作者 JIN Zhenkui ZHOU Xinping LIU Chenglin 《Petroleum Exploration and Development》 SCIE 2023年第4期878-893,共16页
The geological characteristics and enrichment laws of the shale oil in the third submember of the seventh member of Triassic Yanchang Formation(Chang 7_(3)) in the Ordos Basin were analyzed by using the information of... The geological characteristics and enrichment laws of the shale oil in the third submember of the seventh member of Triassic Yanchang Formation(Chang 7_(3)) in the Ordos Basin were analyzed by using the information of core observations, experiments and logging, and then the exploration potential and orientation of the Chang 7_(3) shale oil were discussed. The research findings are obtained in three aspects. First, two types of shale oil, i.e. migratory-retained and retained, are recognized in Chang 7_(3). The former is slightly better than the latter in quality. The migratory-retained shale oil reservoir is featured with the frequent interbedding and overlapping of silty-sandy laminae caused by sandy debris flow and low-density turbidity current and semi-deep-deep lacustrine organic-rich shale laminae. The retained shale oil reservoir is composed of black shale with frequent occurrence of bedding and micro-laminae. Second, high-quality source rocks provide a large quantity of hydrocarbon-rich high-quality fluids with high potential energy. The source-reservoir pressure difference provides power for oil accumulation in thin interbeds of organic-poor sandstones with good seepage conditions and in felsic lamina, tuffaceous lamina and bedding fractures in shales. Hydrocarbon generation-induced fractures, bedding fractures and microfractures provide high-speed pathways for oil micro-migration. Frequent sandstone interlayers and felsic laminae provide a good space for large-scale hydrocarbon accumulation, and also effectively improve the hydrocarbon movability. Third, sand-rich areas around the depression are the main targets for exploring migratory-retained shale oil. Mature deep depression areas are the main targets for exploring retained oil with medium to high maturity. Theoretical research and field application of in-situ conversion in low-mature deep depression areas are the main technical orientations for exploring retained shale oil with low to medium maturity. 展开更多
关键词 ordos basin Triassic yanchang formation Chang 7_(3)submember shale oil migratory-retained RETAINED exploration target
下载PDF
Experimental analysis of the pore structure, relative permeability, and water flooding characteristics of the Yan'an Formation sandstone, southwestern Ordos Basin
6
作者 Ying Yang Xin Zhang +2 位作者 Xiaofeng Zhou Anlun Wang Jiangtao Li 《Energy Geoscience》 2023年第3期182-192,共11页
The oil and gas potential of the Yan'an Formation in the Ordos Basin has yet to be fully tapped. In this study, the pore structure, mobile fluid saturation, and water flooding micro-mechanism of the Yan'an For... The oil and gas potential of the Yan'an Formation in the Ordos Basin has yet to be fully tapped. In this study, the pore structure, mobile fluid saturation, and water flooding micro-mechanism of the Yan'an Formation sandstone are systematically studied through the application of a series of rock physics and fluid experiments. The results show that there is a good positive correlation between porosity and permeability, and the reservoirs are divided into types Ⅰ, Ⅱ, and Ⅲ. Mercury injection tests show that the average pore throat radius of the oil-bearing reservoir ranges from 1 to 7 μm. The displacement pressure of the Yan'an Formation is also relatively low, and it decreases from 0.1 MPa to 0.01 MPa as the rock porosity increases from 11% to 18%. NMR tests show that small (diameter <0.5 μm) and medium pores (diameter ranging from 0.5 to 2.5 μm) are predominant in the reservoir. Different types of reservoirs have different characteristics of relative permeability curve. In addition, when the average oil recovery rate is less than 1 ml/min, the oil displacement efficiency increases faster. However, when the average oil recovery rate is between 1–3.5 ml/min, the oil displacement efficiency is maintained at around 27%–30%. Physical properties of the reservoir, pore-throat structure, experimental pressure difference, and pore volume injected — all have significant effects on oil displacement efficiency. For Type Ⅰ and Type Ⅱ reservoirs, the increase of the pore volume injected has a significant effect on oil displacement efficiency. However, for Type Ⅲ reservoirs, the change of pore volume injected has insignificant effect on oil displacement efficiency. This study provides a reference for the formulation of estimated ultimate recovery (EUR) measures for similar sandstone reservoirs. 展开更多
关键词 Pore suuctue Relative permeability test Nudear magnetic Tesonance Water fooding experiment Yan'an formation ordos basin
下载PDF
Features of Sandy Debris Flows of the Yanchang Formation in the Ordos Basin and Its Oil and Gas Exploration Significance 被引量:24
7
作者 LI Xiangbo CHEN Qilin +4 位作者 LIU Huaqing WAN Yanrong WEI Lihua LIAO Jianbo LONG Liwen 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2011年第5期1187-1202,共16页
Sandy debris flow is a new genetic type of sand bodies,which has gained much attention in recent years and its corresponding theory is proved to be a significant improvement and even partial denial to the 'Bouma S... Sandy debris flow is a new genetic type of sand bodies,which has gained much attention in recent years and its corresponding theory is proved to be a significant improvement and even partial denial to the 'Bouma Sequence' and 'turbidite fan' deep-water sedimentary theories to some point. Oil exploration researchers are highly concerned with sandy debris flows for its key role in controlling oil and gas accumulation processes.In this article,by applying sandy debris flows theory and combining a lot work of core,outcrop observation and analysis plus seismic profile interpretation,we recognized three types of sedimentary gravity flows that are sandy debris flows,classic turbidites and slumping rocks in chang-6 member of Yanchang Formation in the deep-water area of central Ordos Basin.Among the three types,the sandy debris flows are the most prominent and possesses the best oil bearing conditions.On the contrary,the classic turbidites formed by turbidity currents are limited in distribution;therefore,previous Yanchang Formation deep-water sedimentary studies have exaggerated the importance of turbidite currents deposition.Further study showed that the area distribution of deep water gravity flow sand bodies in Yanchang Formation were controlled by the slope of the deep-water deposits and the flows had vast distribution,huge depth and prevalent advantages for oil forming,which make it one of the most favorable new areas for Ordos Basin prospecting. 展开更多
关键词 sandy debris flows sedimentary characteristics oil and gas prospecting values yanchang formation ordos basin
下载PDF
The role of provenance in the diagenesis of siliciclastic reservoirs in the Upper Triassic Yanchang Formation,Ordos Basin,China 被引量:16
8
作者 Ding Xiaoqi Han Meimei Zhang Shaonan 《Petroleum Science》 SCIE CAS CSCD 2013年第2期149-160,共12页
A better understanding of the controls on reservoir quality has become essential in the petroleum exploration in recent years. Determining the original composition of tile sediment framework is important not only for ... A better understanding of the controls on reservoir quality has become essential in the petroleum exploration in recent years. Determining the original composition of tile sediment framework is important not only for paleogeographic reconstructions, but it is also vital tbr predicting the nature of physical and chemical diagenesis of the potential reservoirs. Depositional setting and diagenesis are important factors in controlling the type and quality of most siliciclastic reservoirs. We studied the Upper Triassic Chang 8 and 6 members, where the relationship between sediment provenance and diagenesis was examined. The study attempts to clarify sediment provenance and post-depositional diagenetic modifications of the sandstones through systematic analytical methods including petrographic macro- and microscopic analysis of grain and heavy mineral types, and measurements of the palaeocurrent direction of the Yanchang Formation sediments in the outcrops in order to determine the provenance of the studied sediments. Furthermore, the relationship between framework grains, pore types and diagenesis of the sediments was analyzed by thin section petrographic characterization using a polarizing microscope. Additionally, a JEOL JSM-T330 scanning electron microscope (SEM) equipped with a digital imaging system was used to investigate the habits and textural relationships of diagenetic minerals. On the basis of our results, we believe that sediment provenance is a significant factor which controls the type and degree of diagenesis which may be expected in sandstones. In the Chang 8 and 6 members, tile formation of chlorite rims and laumontite cement was observed where volcanic rock fragments constitute a large part of the framework grains. Furthermore, high biotite content provides abundant iron and magnesium and enables the tbnnation of chlorite rims due to biotite hydrolysis. In addition, ductile deformation of biotite leads to strong mechanical compaction of the sediments. Conversely, high feldspar content diminishes the degree of mechanical compaction, however the dissolution of feldspar minerals in sandstones is commonly observed. Apart from feldspars, quartz and other rigid fi'amework grains highly control the degree of mechanical compaction during the initial stage of burial (0-2 km). 展开更多
关键词 PROVENANCE DIAGENESIS tight sandstones yanchang formation ordos basin
下载PDF
Insights into the Tectonic Fractures in the Yanchang Formation Interbedded Sandstone-Mudstone of the Ordos Basin Based on Core Data and Geomechanical Models 被引量:16
9
作者 JU Wei SUN Weifeng HOU Guiting 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第6期1986-1997,共12页
The distribution and intensity of tectonic fractures within geologic units are important to hydrocarbon exploration and development. Taken the Upper Triassic Yanchang Formation interbedded sandstone-mudstone in the Or... The distribution and intensity of tectonic fractures within geologic units are important to hydrocarbon exploration and development. Taken the Upper Triassic Yanchang Formation interbedded sandstone-mudstone in the Ordos Basin as an example, this study used the finite element method(FEM) based on geomechanical models to study the development of tectonic fractures. The results show that the sandstones tend to generate tectonic fractures more easily than mudstones with the same layer thickness, and the highest degree of tectonic fractures will be developed when the sandstone-mudstone thickness ratio is about 5.0. A possible explanation is proposed for the tectonic fracture development based on two important factors of rock brittleness and mechanical layer thickness. Generally, larger rock brittleness and thinner layer thickness will generate more tectonic fractures. In interbedded sandstone-mudstone formations, the rock brittleness increases with the increasing mechanical layer thickness, hence, these two factors will achieve a balance for the development of tectonic fractures when the sandstone-mudstone thickness ratio reaches a specific value, and the development degree of tectonic fractures is the highest at this value. 展开更多
关键词 tectonic fractures interbedded sandstone-mudstone formations sandstone-mudstonethickness ratio yanchang formation rock rupture value ordos basin
下载PDF
Diagenesis of the Triassic Yanchang Formation Tight Sandstone Reservoir in the Xifeng–Ansai Area of Ordos Basin and its Porosity Evolution 被引量:11
10
作者 LIU Mingjie LIU Zhen +1 位作者 WANG Peng PAN Gaofeng 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第3期956-970,共15页
This work aims to reveal the evolution of the porosity in the Triassic Yanchang Formation tight sandstone reservoir of the Xifeng-Ansai area of Ordos Basin. Based on destructive diagenesis (compaction and cementation... This work aims to reveal the evolution of the porosity in the Triassic Yanchang Formation tight sandstone reservoir of the Xifeng-Ansai area of Ordos Basin. Based on destructive diagenesis (compaction and cementation) and constructive diagenesis (dissolution) of sandstone reservoirs, this study analyzed the diagenesis characteristics of the tight sandstone reservoirs in this area, and discussed the relationship between sandstone diagenesis and porosity evolution in combination with present porosity profile characteristics of sandstone reservoir. The effect simulation principle was employed for the mathematical derivation and simulation of the evolution of porosity in the Yanchang Formation tight sandstone reservoirs. The result shows that compaction always occurs in tight sandstone reservoirs in the Yanchang Formation, and cementation occurs when the burial depth increases to a certain value and remains ever since. Dissolution occurs only at a certain stage of the evolution with window features. In the corresponding present porosity profile, diagenesis is characterized by segmentation. From the shallow to the deep, compaction, compaction, cementation and dissolution, compaction and cementation occur successively. Therefore, the evolution of sandstone porosity can be divided into normal compaction section, acidification and incremental porosity section, and normal compaction section after dissolution. The results show that the evolution of sandstone porosity can be decomposed into porosity reduction model and porosity increase model. The superposition of the two models at the same depth in the three stages or in the same geological time can constitute the evolution simulation of the total porosity in sandstone reservoirs. By simulating the evolution of sandstone reservoir porosity of the eighth member in Xifeng area and the sixth member in Ansai area, it shows that they are similar in the evolution process and trend. The difference is caused by the regional uplift or subsidence and burial depth. 展开更多
关键词 tight sandstone DIAGENESIS porosity evolution effect simulation yanchang formation ordos basin
下载PDF
Genesis of the high gamma sandstone of the Yanchang Formation in the Ordos Basin,China 被引量:11
11
作者 Liu Huaqing Li Xiangbo +1 位作者 Liao Jianbo Liu Xianyang 《Petroleum Science》 SCIE CAS CSCD 2013年第1期50-54,共5页
Recently, more attention has been paid on the high gamma sandstone reservoirs of the Yanchang Formation in the Ordos Basin, China. These high gamma sandstones have logging characteristics different from conventional s... Recently, more attention has been paid on the high gamma sandstone reservoirs of the Yanchang Formation in the Ordos Basin, China. These high gamma sandstones have logging characteristics different from conventional sandstones, which influences the identification of sandstone reservoirs. Zhang et al (2010) proposed that the high gamma sandstones of the Yanchang Formation might be the result of re-deposition of homochronous sedimentary tufts or previous tufts as a part of the sandstone. However, we present a different viewpoint: 1) few tufts or tuff debris have been found in the high gamma sandstones of the Yanchang Formation; 2) high gamma (or high Th content) sandstones of Yanchang Formation are not related to either clay minerals or feldspar; 3) the heavy minerals in the sandstone reservoirs of the Yanchang Formation are dominated by zircon, which is characterized by abnormally high Th and U contents, up to 2,163 ppm and 1,362 ppm, respectively. This is sufficient to explain the high gamma anomaly. The conclusion is that the high gamma value of the Yanchang Formation sandstones might be caused by zircon with high Th and U contents in sandstones rather than from the tuff components. 展开更多
关键词 High gamma sandstones reservoir ZIRCON yanchang formation ordos basin
下载PDF
Characteristics and Origin of Tight Oil Accumulations in the Upper Triassic Yanchang Formation of the Ordos Basin,North-Central China 被引量:13
12
作者 WU Songtao ZOU Caineng +6 位作者 ZHU Rukai YAO Jingli TAO Shizhen YANG Zhi ZHAI Xiufen CUI Jingwei LIN Senhu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第5期1821-1837,共17页
The Upper Triassic oil accumulations in the Ordos Basin is the most successful tight oil play in China,with average porosity values of less than 10% and permeability values below 1.0 mD.This study investigated the geo... The Upper Triassic oil accumulations in the Ordos Basin is the most successful tight oil play in China,with average porosity values of less than 10% and permeability values below 1.0 mD.This study investigated the geological characteristics and origin of the tight oil accumulations in the Chang 6 member of the Upper Triassic Yanchang Formation in the Shanbei area based on over 50,000 petrological,source-rock analysis,well logging and production data.The tight oil accumulation of the Chang 6 member is distributed continuously in the basin slope and the centre of the basin.The oilwater relationships are complex.Laumontite dissolution pores are the most important storage spaces,constituting 30%-60% of total porosity and showing a strong positive relationship with oil production.The pore-throat diameter is less than 1 μm,and the calculated critical height of the oil column is much larger than the tight sand thickness,suggesting that the buoyancy was probably of limited importance for oil migration.The pressure difference between the source rocks and sandstone reservoirs is inferred to have provided driving force for hydrocarbon migration.Two factors of source-reservoir configuration and laumontite dissolution contributed to the formation of the Chang 6 tight oil accumulations.Intense hydrocarbon generation and continuous sand bodies close to the hydrocarbon kitchen are the foundation for the large-scale oil distribution.Dissolution of feldspar-laumontite during the process of organic matter evolution generated abundant secondary pores and improved the reservoir quality. 展开更多
关键词 tight oil DIAGENESIS tight sand NANOPORES yanchang Fm. ordos basin
下载PDF
Main controlling factors and exploration enlightenment of aluminous rock series gas reservoirs in Ordos Basin,NW China
13
作者 ZHANG Lei CAO Qian +7 位作者 ZHANG Caili ZHANG Jianwu WEI Jiayi LI Han WANG Xingjian PAN Xing YAN Ting QUAN Haiqi 《Petroleum Exploration and Development》 SCIE 2024年第3期621-633,共13页
Based on the data of outcrop,core,logging,gas testing,and experiments,the natural gas accumulation and aluminous rock mineralization integrated research was adopted to analyze the controlling factors of aluminous rock... Based on the data of outcrop,core,logging,gas testing,and experiments,the natural gas accumulation and aluminous rock mineralization integrated research was adopted to analyze the controlling factors of aluminous rock series effective reservoirs in the Ordos Basin,NW China,as well as the configuration of coal-measure source rocks and aluminous rock series reservoirs.A natural gas accumulation model was constructed to evaluate the gas exploration potential of aluminous rock series under coal seam in the basin.The effective reservoirs of aluminous rock series in the Ordos Basin are composed of honeycomb-shaped bauxites with porous residual pisolitic and detrital structures,with the diasporite content of greater than 80%and dissolved pores as the main storage space.The bauxite reservoirs are formed under a model that planation controls the material supply,karst paleogeomorphology controls diagenesis,and land surface leaching improves reservoir quality.The hot humid climate and sea level changes in the Late Carboniferous–Early Permian dominated the development of a typical coal-aluminum-iron three-stage stratigraphic structure.The natural gas generated by the extensive hydrocarbon generation of coal-measure source rocks was accumulated in aluminous rock series under the coal seam,indicating a model of hydrocarbon accumulation under the source.During the Upper Carboniferous–Lower Permian,the relatively low-lying area on the edge of an ancient land or island in the North China landmass was developed.The gas reservoirs of aluminous rock series,which are clustered at multiple points in lenticular shape,are important new natural gas exploration fields with great potential in the Upper Paleozoic of North China Craton. 展开更多
关键词 ordos basin Carboniferous Benxi formation Permian Taiyuan formation aluminous rock series coal-aluminum-iron three-stage stratigraphic structure hydrocarbon accumulation under source
下载PDF
Nanoscale pore morphology and distribution of lacustrine shale reservoirs:Examples from the Upper Triassic Yanchang Formation,Ordos Basin 被引量:7
14
作者 Yang Wang Yanming Zhu +1 位作者 Hongyan Wang Guangjun Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2015年第4期512-519,共8页
Pore structure plays an important role in the gas storage and flow capacity of shale gas reservoirs. Fieldemission environmental scanning electron microscopy(FE-SEM) in combination with low-pressure carbon dioxide g... Pore structure plays an important role in the gas storage and flow capacity of shale gas reservoirs. Fieldemission environmental scanning electron microscopy(FE-SEM) in combination with low-pressure carbon dioxide gas adsorption(CO2GA),nitrogen gas adsorption(N2GA),and high-pressure mercury intrusion(HPMI) were used to study the nanostructure pore morphology and pore-size distributions(PSDs) of lacustrine shale from the Upper Triassic Yanchang Formation,Ordos Basin. Results show that the pores in the shale reservoirs are generally nanoscale and can be classified into four types: organic,interparticle,intraparticle,and microfracture. The interparticle pores between clay particles and organic-matter pores develop most often,l with pore sizes that vary from several to more than 100 nm. Mercury porosimetry analysis shows total porosities ranging between 1.93 and 7.68%,with a mean value of 5.27%. The BET surface areas as determined by N2 adsorption in the nine samples range from 10 to 20 m2/g and the CO2 equivalent surface areas(2 nm)vary from 18 to 71 m2/g. Together,the HPMI,N2 GA,and CO2 GA curves indicate that the pore volumes are mainly due to pores 100 nm in size. In contrast,however,most of the specific surface areas are provided by the micropores. The total organic carbon(TOC) and clay minerals are the primary controls of the structures of nanoscale pores(especially micropores and mesopores). Micropores are predominantly determined by the content of the TOC,and mesopores are possibly related to the content of clay minerals,particularly the illite-montmorillonite mixed-layer content. 展开更多
关键词 Pore morphology Pore-size distributions Lacustrine shale yanchang formation ordos basin
下载PDF
Tracing of natural gas migration by light hydrocarbons:A case study of the Dongsheng gas field in the Ordos Basin,NW China
15
作者 WU Xiaoqi NI Chunhua +3 位作者 MA Liangbang WANG Fubin JIA Huichong WANG Ping 《Petroleum Exploration and Development》 SCIE 2024年第2期307-319,共13页
Based on the analysis of light hydrocarbon compositions of natural gas and regional comparison in combination with the chemical components and carbon isotopic compositions of methane,the indication of geochemical char... Based on the analysis of light hydrocarbon compositions of natural gas and regional comparison in combination with the chemical components and carbon isotopic compositions of methane,the indication of geochemical characteristics of light hydrocarbons on the migration features,dissolution and escape of natural gas from the Dongsheng gas field in the Ordos Basin is revealed,and the effect of migration on specific light hydrocarbon indexes is further discussed.The study indicates that,natural gas from the Lower Shihezi Formation(Pix)in the Dongsheng gas field displays higher iso-C5-7contents than n-C5-7contents,and the C6-7light hydrocarbons are composed of paraffins with extremely low aromatic contents(<0.4%),whereas the C7light hydrocarbons are dominated by methylcyclohexane,suggesting the characteristics of coal-derived gas with the influence by secondary alterations such as dissolution.The natural gas from the Dongsheng gas field has experienced free-phase migration from south to north and different degrees of dissolution after charging,and the gas in the Shiguhao area to the north of the Borjianghaizi fault has experienced apparent diffusion loss after accumulation.Long-distance migration in free phase results in the decrease of the relative contents of the methylcyclohexane in C7 light hydrocarbons and the toluene/n-heptane ratio,as well as the increase of the n-heptane/methylcyclohexane ratio and heptane values.The dissolution causes the increase of isoheptane values of the light hydrocarbons,whereas the diffusion loss of natural gas in the Shiguhao area results in the increase of n-C5-7contents compared to the iso-C5-7contents. 展开更多
关键词 ordos basin Dongsheng gas field Permian Lower Shihezi formation light hydrocarbon compounds MATURITY natural gas origin migration phase state diffusion loss
下载PDF
Fracture prediction in the tight-oil reservoirs of the Triassic Yanchang Formation in the Ordos Basin,northern China 被引量:7
16
作者 Wen-Tao Zhao Gui-Ting Hou 《Petroleum Science》 SCIE CAS CSCD 2017年第1期1-23,共23页
It is important to predict the fracture distribution in the tight reservoirs of the Ordos Basin because fracturing is very crucial for the reconstruction of the low-permeability reservoirs. Three-dimensional finite el... It is important to predict the fracture distribution in the tight reservoirs of the Ordos Basin because fracturing is very crucial for the reconstruction of the low-permeability reservoirs. Three-dimensional finite element models are used to predict the fracture orientation and distribution of the Triassic Yanchang Formation in the Longdong area, southern Ordos Basin. The numerical modeling is based on the distribution of sand bodies in the Chang 7a and 72 members, and the different forces that have been exerted along each boundary of the basin in the Late Mesozoic and the Cenozoic. The calculated results demonstrate that the fracture orientations in the Late Mesozoic and the Ceno- zoic are NW-EW and NNE-ENE, respectively. In this paper, the two-factor method is applied to analyze the distribution of fracture density. The distribution maps of predicted fracture density in the Chang 71 and 72 members are obtained, indicating that the tectonic movement in the Late Mesozoic has a greater influence on the fracture development than that in the Cenozoic. The average fracture densities in the Chang 71 and 72 members are similar, but there are differences in their distributions. Compared with other geological elements, the lithology and the layer thickness are the primary factors that control the stress distribution in the study area, which further determine the fracture distribution in the stable Ordos Basin. The predicted fracture density and the two-factor method can be utilized to guide future exploration in the tight-sand reservoirs. 展开更多
关键词 ordos basin - yanchang formation Fractureprediction Finite element modeling Two-factor methodTight-sand reservoirs
下载PDF
Genesis of the high gamma sandstone of the Yanchang Formation in the Ordos Basin,China:A reply 被引量:3
17
作者 Zhang Xiaoli Feng Qiao +3 位作者 Feng Qianghan Liu Jingjing Liu Guangwei Yan Yuanzi 《Petroleum Science》 SCIE CAS CSCD 2013年第1期55-57,共3页
The authors of 'Genesis of the high gamma sandstone of the Yanchang Formation in the Ordos Basin, China' questioned the viewpoint that high-gamma-ray sandstone might be caused by homochronous sedimentary volcano tuf... The authors of 'Genesis of the high gamma sandstone of the Yanchang Formation in the Ordos Basin, China' questioned the viewpoint that high-gamma-ray sandstone might be caused by homochronous sedimentary volcano tuff ash or previous tuff. The authors argued that the main reason for the high-gamma-ray sandstone should be from high Th and U contents in zircon. In reply, we discuss the problems with the authors from the category of high-gamma-ray sandstones, rock characteristics, and possible sources of radioactivity. The results still indicate that the high gamma ray characteristics might be caused by homochronous sedimentary volcano tuff ash or reworked previous turfs. 展开更多
关键词 High-gamma-ray sandstone PROVENANCE event deposit yanchang formation ordos basin
下载PDF
Predicting the present-day in situ stress distribution within the Yanchang Formation Chang 7 shale oil reservoir of Ordos Basin, central China 被引量:5
18
作者 Wei Ju Xiao-Bing Niu +4 位作者 Sheng-Bin Feng Yuan You Ke Xu Geof Wang Hao-Ran Xu 《Petroleum Science》 SCIE CAS CSCD 2020年第4期912-924,共13页
The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil.The present-day in situ stress state is of practical implications for the exploration and development o... The Yanchang Formation Chang 7 oil-bearing layer of the Ordos Basin is important in China for producing shale oil.The present-day in situ stress state is of practical implications for the exploration and development of shale oil;however,few studies are focused on stress distributions within the Chang 7 reservoir.In this study,the present-day in situ stress distribution within the Chang 7 reservoir was predicted using the combined spring model based on well logs and measured stress data.The results indicate that stress magnitudes increase with burial depth within the Chang 7 reservoir.Overall,the horizontal maximum principal stress(SHmax),horizontal minimum principal stress(Shmin) and vertical stress(Sv) follow the relationship of Sv≥SHmax>Shmin,indicating a dominant normal faulting stress regime within the Chang 7 reservoir of Ordos Basin.Laterally,high stress values are mainly distributed in the northwestern parts of the studied region,while low stress values are found in the southeastern parts.Factors influencing stress distributions are also analyzed.Stress magnitudes within the Chang 7 reservoir show a positive linear relationship with burial depth.A larger value of Young's modulus results in higher stress magnitudes,and the differential horizontal stress becomes higher when the rock Young's modulus grows larger. 展开更多
关键词 Present-day in situ stress Chang 7 shale oil reservoir Influencing factor ordos basin Stress distribution prediction yanchang formation
下载PDF
Imaging-Based Characterization of Perthite in the Upper Triassic Yanchang Formation Tight Sandstone of the Ordos Basin,China 被引量:2
19
作者 DU Shuheng SHI Guoxin +3 位作者 YUE Xinjian KOU Gen ZHOU Bo SHI Yongmin 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2019年第2期373-385,共13页
This work investigated the element distribution of perthite from the Upper Triassic Yanchang Formation tight sandstone in the Ordos Basin of northern China by field emission scanning electron microscopy(FE-SEM) and en... This work investigated the element distribution of perthite from the Upper Triassic Yanchang Formation tight sandstone in the Ordos Basin of northern China by field emission scanning electron microscopy(FE-SEM) and energy dispersive spectrometer(EDS). FE-SEM results indicate significant differences in the morphology of Na-rich feldspar when K-rich feldspar is the main component of the perthite. EDS results show that different types of perthite have clearly defined differences on different element indexes. Additionally, indexes such as average-weight-K(K-rich)/Na(Na-rich), maximumweight-K(Na-rich)/Na(Na-rich) and average-atomic-K(K-rich)/Na(Na-rich) might be the most effective ones to identify perthite types. Perthite is divided into six main types, i.e., perthite with thick parallel stripe distribution, with thin parallel stripe distribution, with lumpy stripe distribution, with dendritic stripe distribution, with encircling stripe distribution, and with mixed stripe distribution. 展开更多
关键词 PETROGRAPHY perthite element distribution EDS FE-SEM image processing yanchang formation Late TRIASSIC ordos basin
下载PDF
Physical property characteristics of Yanchang Formation reservoir in the southwest of Ordos Basin and their controlling fac-tors: taking Chang 3 and Chang 4 + 5 reservoirs in Longdong area as an example 被引量:1
20
作者 吴旭光 《西安石油大学学报(自然科学版)》 CAS 北大核心 2014年第6期I0001-I0007,47,共7页
分析鄂尔多斯盆地西南部陇东地区延长组储层物性特征及其控制因素,发现沉积和成岩控制储层物性。沉积微相带不同,储层物性就不同;成岩作用中压实-压溶作用、胶结作用对储层物性具有破坏作用,溶蚀作用是储层物性改善的关键因素。沉... 分析鄂尔多斯盆地西南部陇东地区延长组储层物性特征及其控制因素,发现沉积和成岩控制储层物性。沉积微相带不同,储层物性就不同;成岩作用中压实-压溶作用、胶结作用对储层物性具有破坏作用,溶蚀作用是储层物性改善的关键因素。沉积微相带是控制油气藏储层展布的内在因素,成岩作用是储层形成过程中控制物性演化的外部因素。 展开更多
关键词 摘要 编辑部 编辑工作 读者
下载PDF
上一页 1 2 115 下一页 到第
使用帮助 返回顶部