To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Memb...To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.展开更多
The mineralogical development and diagenetic sequence of lacustrine shales in the Chang 7 Member of the Yanchang Formation in the Ordos Basin are detailed studied.A model of their depositional system and a diagenetic ...The mineralogical development and diagenetic sequence of lacustrine shales in the Chang 7 Member of the Yanchang Formation in the Ordos Basin are detailed studied.A model of their depositional system and a diagenetic diagram are proposed in this study.Through detailed petrographic,mineralogical,and elemental analyses,four distinct shale types are identified:argillaceous shale,siliceous shale,calcareous shale,and carbonate,clay,and silt-bearing shale.The main diagenetic process in argillaceous shale is the transformation of illite to smectite,negatively impacting shale porosity.Siliceous shale undergoes carbonate cementation and quartz dissolution,contributing to increased porosity,particularly in mesopores.Calcareous shale experiences diagenesis characterised by carbonate formation and dissolution,with a prevalence of siderite.In carbonate,clay,and silt-bearing shale,the dissolution of K-feldspar contributes to illitization of kaolinite.Argillaceous shale,characterised by more clay minerals and lower mesopore volume,is identified as a potential hydrocarbon seal.Siliceous shale,with the highest pore volume and abundant inter-mineral pores,emerges as a promising shale oil reservoir.These findings contribute to a comprehensive understanding of shale properties,aiding in the prediction of shale oil exploration potential in the studied area.展开更多
Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval anal...Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval analyses,this study systematically investigated the organic matter and pyrites in the continental shales in the 3^(rd)submember of the Chang 7 Member(Chang 7^(3)submember)in the Yanchang Formation,Ordos Basin and determined their types and the formation and evolutionary characteristics.The results are as follows.The organic matter of the continental shales in the Chang 7^(3)submember is dominated by amorphous bituminites and migrabitumens,which have come into being since the early diagenetic stage and middle diagenetic stage A,respectively.The formation and transformation of organic matter is a prerequisite for the formation of pyrites.The Ordos Basin was a continental freshwater lacustrine basin and lacked sulphates in waters during the deposition of the Chang 7 Member.Therefore,the syndiagenetic stage did not witness the formation of large quantities of pyrites.Since the basin entered early diagenetic stage A,large quantities of sulfur ions were released as the primary organic matter got converted into bituminites and,accordingly,pyrites started to form.However,this stage featured poorer fluid and spatial conditions compared with the syndepositional stage due to withdraw of water,the partial formation of bituminites,and a certain degree of compaction.As a result,large quantities of pyrrhotite failed to transition into typical spherical framboidal pyrites but grew into euhedral monocrystal aggregates.In addition,pyrites are still visible in the migrabitumens in both microfractures and inorganic pores of mudstones and shales,indicating that the pyrite formation period can extend until the middle diagenetic stage A.展开更多
To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal ro...To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.展开更多
Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore charact...Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.展开更多
Through core observation,thin section identification,and logging and testing data analysis,the types and characteristics of event deposits in the ninth member of Yanchang Formation of Triassic(Chang 9 Member)in southw...Through core observation,thin section identification,and logging and testing data analysis,the types and characteristics of event deposits in the ninth member of Yanchang Formation of Triassic(Chang 9 Member)in southwestern Ordos Basin,China,are examined.There are 4 types and 9 subtypes of event deposits,i.e.earthquake,gravity flow,volcanic and anoxic deposits,in the Chang 9 Member in the study area.Based on the analysis of the characteristics and distribution of such events deposits,it is proposed that the event deposits are generally symbiotic or associated,with intrinsic genetic relations and distribution laws.Five kinds of sedimentary microfacies with relatively developed event deposits are identified,and the genetic model of event deposits is discussed.Seismites are mainly developed in the lake transgression stage when the basin expands episodically,and commonly affected by liquefaction flow,gravity action and brittle shear deformation.Gravity flow,mainly distributed in the high water level period,sandwiched in the fine-grained sediments of prodelta or semi-deep lake,or creates banded or lobate slump turbidite fan.It is relatively developed above the seismites strata.The volcanic event deposits are only seen in the lower part of the Chang 9 Member,showing abrupt contact at the top and bottom,which reflects the volcanic activity at the same time.Anoxic deposits are mostly formed in the late stage of lake transgression to the highstand stage.Very thick organic-rich shales are developed in the highstand stage of Chang 9 Member,and the event deposits in the depositional period of these shales are conducive to potential reservoirs.展开更多
The geological characteristics and enrichment laws of the shale oil in the third submember of the seventh member of Triassic Yanchang Formation(Chang 7_(3)) in the Ordos Basin were analyzed by using the information of...The geological characteristics and enrichment laws of the shale oil in the third submember of the seventh member of Triassic Yanchang Formation(Chang 7_(3)) in the Ordos Basin were analyzed by using the information of core observations, experiments and logging, and then the exploration potential and orientation of the Chang 7_(3) shale oil were discussed. The research findings are obtained in three aspects. First, two types of shale oil, i.e. migratory-retained and retained, are recognized in Chang 7_(3). The former is slightly better than the latter in quality. The migratory-retained shale oil reservoir is featured with the frequent interbedding and overlapping of silty-sandy laminae caused by sandy debris flow and low-density turbidity current and semi-deep-deep lacustrine organic-rich shale laminae. The retained shale oil reservoir is composed of black shale with frequent occurrence of bedding and micro-laminae. Second, high-quality source rocks provide a large quantity of hydrocarbon-rich high-quality fluids with high potential energy. The source-reservoir pressure difference provides power for oil accumulation in thin interbeds of organic-poor sandstones with good seepage conditions and in felsic lamina, tuffaceous lamina and bedding fractures in shales. Hydrocarbon generation-induced fractures, bedding fractures and microfractures provide high-speed pathways for oil micro-migration. Frequent sandstone interlayers and felsic laminae provide a good space for large-scale hydrocarbon accumulation, and also effectively improve the hydrocarbon movability. Third, sand-rich areas around the depression are the main targets for exploring migratory-retained shale oil. Mature deep depression areas are the main targets for exploring retained oil with medium to high maturity. Theoretical research and field application of in-situ conversion in low-mature deep depression areas are the main technical orientations for exploring retained shale oil with low to medium maturity.展开更多
The oil and gas potential of the Yan'an Formation in the Ordos Basin has yet to be fully tapped. In this study, the pore structure, mobile fluid saturation, and water flooding micro-mechanism of the Yan'an For...The oil and gas potential of the Yan'an Formation in the Ordos Basin has yet to be fully tapped. In this study, the pore structure, mobile fluid saturation, and water flooding micro-mechanism of the Yan'an Formation sandstone are systematically studied through the application of a series of rock physics and fluid experiments. The results show that there is a good positive correlation between porosity and permeability, and the reservoirs are divided into types Ⅰ, Ⅱ, and Ⅲ. Mercury injection tests show that the average pore throat radius of the oil-bearing reservoir ranges from 1 to 7 μm. The displacement pressure of the Yan'an Formation is also relatively low, and it decreases from 0.1 MPa to 0.01 MPa as the rock porosity increases from 11% to 18%. NMR tests show that small (diameter <0.5 μm) and medium pores (diameter ranging from 0.5 to 2.5 μm) are predominant in the reservoir. Different types of reservoirs have different characteristics of relative permeability curve. In addition, when the average oil recovery rate is less than 1 ml/min, the oil displacement efficiency increases faster. However, when the average oil recovery rate is between 1–3.5 ml/min, the oil displacement efficiency is maintained at around 27%–30%. Physical properties of the reservoir, pore-throat structure, experimental pressure difference, and pore volume injected — all have significant effects on oil displacement efficiency. For Type Ⅰ and Type Ⅱ reservoirs, the increase of the pore volume injected has a significant effect on oil displacement efficiency. However, for Type Ⅲ reservoirs, the change of pore volume injected has insignificant effect on oil displacement efficiency. This study provides a reference for the formulation of estimated ultimate recovery (EUR) measures for similar sandstone reservoirs.展开更多
Sandy debris flow is a new genetic type of sand bodies,which has gained much attention in recent years and its corresponding theory is proved to be a significant improvement and even partial denial to the 'Bouma S...Sandy debris flow is a new genetic type of sand bodies,which has gained much attention in recent years and its corresponding theory is proved to be a significant improvement and even partial denial to the 'Bouma Sequence' and 'turbidite fan' deep-water sedimentary theories to some point. Oil exploration researchers are highly concerned with sandy debris flows for its key role in controlling oil and gas accumulation processes.In this article,by applying sandy debris flows theory and combining a lot work of core,outcrop observation and analysis plus seismic profile interpretation,we recognized three types of sedimentary gravity flows that are sandy debris flows,classic turbidites and slumping rocks in chang-6 member of Yanchang Formation in the deep-water area of central Ordos Basin.Among the three types,the sandy debris flows are the most prominent and possesses the best oil bearing conditions.On the contrary,the classic turbidites formed by turbidity currents are limited in distribution;therefore,previous Yanchang Formation deep-water sedimentary studies have exaggerated the importance of turbidite currents deposition.Further study showed that the area distribution of deep water gravity flow sand bodies in Yanchang Formation were controlled by the slope of the deep-water deposits and the flows had vast distribution,huge depth and prevalent advantages for oil forming,which make it one of the most favorable new areas for Ordos Basin prospecting.展开更多
A better understanding of the controls on reservoir quality has become essential in the petroleum exploration in recent years. Determining the original composition of tile sediment framework is important not only for ...A better understanding of the controls on reservoir quality has become essential in the petroleum exploration in recent years. Determining the original composition of tile sediment framework is important not only for paleogeographic reconstructions, but it is also vital tbr predicting the nature of physical and chemical diagenesis of the potential reservoirs. Depositional setting and diagenesis are important factors in controlling the type and quality of most siliciclastic reservoirs. We studied the Upper Triassic Chang 8 and 6 members, where the relationship between sediment provenance and diagenesis was examined. The study attempts to clarify sediment provenance and post-depositional diagenetic modifications of the sandstones through systematic analytical methods including petrographic macro- and microscopic analysis of grain and heavy mineral types, and measurements of the palaeocurrent direction of the Yanchang Formation sediments in the outcrops in order to determine the provenance of the studied sediments. Furthermore, the relationship between framework grains, pore types and diagenesis of the sediments was analyzed by thin section petrographic characterization using a polarizing microscope. Additionally, a JEOL JSM-T330 scanning electron microscope (SEM) equipped with a digital imaging system was used to investigate the habits and textural relationships of diagenetic minerals. On the basis of our results, we believe that sediment provenance is a significant factor which controls the type and degree of diagenesis which may be expected in sandstones. In the Chang 8 and 6 members, tile formation of chlorite rims and laumontite cement was observed where volcanic rock fragments constitute a large part of the framework grains. Furthermore, high biotite content provides abundant iron and magnesium and enables the tbnnation of chlorite rims due to biotite hydrolysis. In addition, ductile deformation of biotite leads to strong mechanical compaction of the sediments. Conversely, high feldspar content diminishes the degree of mechanical compaction, however the dissolution of feldspar minerals in sandstones is commonly observed. Apart from feldspars, quartz and other rigid fi'amework grains highly control the degree of mechanical compaction during the initial stage of burial (0-2 km).展开更多
The distribution and intensity of tectonic fractures within geologic units are important to hydrocarbon exploration and development. Taken the Upper Triassic Yanchang Formation interbedded sandstone-mudstone in the Or...The distribution and intensity of tectonic fractures within geologic units are important to hydrocarbon exploration and development. Taken the Upper Triassic Yanchang Formation interbedded sandstone-mudstone in the Ordos Basin as an example, this study used the finite element method(FEM) based on geomechanical models to study the development of tectonic fractures. The results show that the sandstones tend to generate tectonic fractures more easily than mudstones with the same layer thickness, and the highest degree of tectonic fractures will be developed when the sandstone-mudstone thickness ratio is about 5.0. A possible explanation is proposed for the tectonic fracture development based on two important factors of rock brittleness and mechanical layer thickness. Generally, larger rock brittleness and thinner layer thickness will generate more tectonic fractures. In interbedded sandstone-mudstone formations, the rock brittleness increases with the increasing mechanical layer thickness, hence, these two factors will achieve a balance for the development of tectonic fractures when the sandstone-mudstone thickness ratio reaches a specific value, and the development degree of tectonic fractures is the highest at this value.展开更多
This work aims to reveal the evolution of the porosity in the Triassic Yanchang Formation tight sandstone reservoir of the Xifeng-Ansai area of Ordos Basin. Based on destructive diagenesis (compaction and cementation...This work aims to reveal the evolution of the porosity in the Triassic Yanchang Formation tight sandstone reservoir of the Xifeng-Ansai area of Ordos Basin. Based on destructive diagenesis (compaction and cementation) and constructive diagenesis (dissolution) of sandstone reservoirs, this study analyzed the diagenesis characteristics of the tight sandstone reservoirs in this area, and discussed the relationship between sandstone diagenesis and porosity evolution in combination with present porosity profile characteristics of sandstone reservoir. The effect simulation principle was employed for the mathematical derivation and simulation of the evolution of porosity in the Yanchang Formation tight sandstone reservoirs. The result shows that compaction always occurs in tight sandstone reservoirs in the Yanchang Formation, and cementation occurs when the burial depth increases to a certain value and remains ever since. Dissolution occurs only at a certain stage of the evolution with window features. In the corresponding present porosity profile, diagenesis is characterized by segmentation. From the shallow to the deep, compaction, compaction, cementation and dissolution, compaction and cementation occur successively. Therefore, the evolution of sandstone porosity can be divided into normal compaction section, acidification and incremental porosity section, and normal compaction section after dissolution. The results show that the evolution of sandstone porosity can be decomposed into porosity reduction model and porosity increase model. The superposition of the two models at the same depth in the three stages or in the same geological time can constitute the evolution simulation of the total porosity in sandstone reservoirs. By simulating the evolution of sandstone reservoir porosity of the eighth member in Xifeng area and the sixth member in Ansai area, it shows that they are similar in the evolution process and trend. The difference is caused by the regional uplift or subsidence and burial depth.展开更多
Recently, more attention has been paid on the high gamma sandstone reservoirs of the Yanchang Formation in the Ordos Basin, China. These high gamma sandstones have logging characteristics different from conventional s...Recently, more attention has been paid on the high gamma sandstone reservoirs of the Yanchang Formation in the Ordos Basin, China. These high gamma sandstones have logging characteristics different from conventional sandstones, which influences the identification of sandstone reservoirs. Zhang et al (2010) proposed that the high gamma sandstones of the Yanchang Formation might be the result of re-deposition of homochronous sedimentary tufts or previous tufts as a part of the sandstone. However, we present a different viewpoint: 1) few tufts or tuff debris have been found in the high gamma sandstones of the Yanchang Formation; 2) high gamma (or high Th content) sandstones of Yanchang Formation are not related to either clay minerals or feldspar; 3) the heavy minerals in the sandstone reservoirs of the Yanchang Formation are dominated by zircon, which is characterized by abnormally high Th and U contents, up to 2,163 ppm and 1,362 ppm, respectively. This is sufficient to explain the high gamma anomaly. The conclusion is that the high gamma value of the Yanchang Formation sandstones might be caused by zircon with high Th and U contents in sandstones rather than from the tuff components.展开更多
The Upper Triassic oil accumulations in the Ordos Basin is the most successful tight oil play in China,with average porosity values of less than 10% and permeability values below 1.0 mD.This study investigated the geo...The Upper Triassic oil accumulations in the Ordos Basin is the most successful tight oil play in China,with average porosity values of less than 10% and permeability values below 1.0 mD.This study investigated the geological characteristics and origin of the tight oil accumulations in the Chang 6 member of the Upper Triassic Yanchang Formation in the Shanbei area based on over 50,000 petrological,source-rock analysis,well logging and production data.The tight oil accumulation of the Chang 6 member is distributed continuously in the basin slope and the centre of the basin.The oilwater relationships are complex.Laumontite dissolution pores are the most important storage spaces,constituting 30%-60% of total porosity and showing a strong positive relationship with oil production.The pore-throat diameter is less than 1 μm,and the calculated critical height of the oil column is much larger than the tight sand thickness,suggesting that the buoyancy was probably of limited importance for oil migration.The pressure difference between the source rocks and sandstone reservoirs is inferred to have provided driving force for hydrocarbon migration.Two factors of source-reservoir configuration and laumontite dissolution contributed to the formation of the Chang 6 tight oil accumulations.Intense hydrocarbon generation and continuous sand bodies close to the hydrocarbon kitchen are the foundation for the large-scale oil distribution.Dissolution of feldspar-laumontite during the process of organic matter evolution generated abundant secondary pores and improved the reservoir quality.展开更多
Based on the data of outcrop,core,logging,gas testing,and experiments,the natural gas accumulation and aluminous rock mineralization integrated research was adopted to analyze the controlling factors of aluminous rock...Based on the data of outcrop,core,logging,gas testing,and experiments,the natural gas accumulation and aluminous rock mineralization integrated research was adopted to analyze the controlling factors of aluminous rock series effective reservoirs in the Ordos Basin,NW China,as well as the configuration of coal-measure source rocks and aluminous rock series reservoirs.A natural gas accumulation model was constructed to evaluate the gas exploration potential of aluminous rock series under coal seam in the basin.The effective reservoirs of aluminous rock series in the Ordos Basin are composed of honeycomb-shaped bauxites with porous residual pisolitic and detrital structures,with the diasporite content of greater than 80%and dissolved pores as the main storage space.The bauxite reservoirs are formed under a model that planation controls the material supply,karst paleogeomorphology controls diagenesis,and land surface leaching improves reservoir quality.The hot humid climate and sea level changes in the Late Carboniferous–Early Permian dominated the development of a typical coal-aluminum-iron three-stage stratigraphic structure.The natural gas generated by the extensive hydrocarbon generation of coal-measure source rocks was accumulated in aluminous rock series under the coal seam,indicating a model of hydrocarbon accumulation under the source.During the Upper Carboniferous–Lower Permian,the relatively low-lying area on the edge of an ancient land or island in the North China landmass was developed.The gas reservoirs of aluminous rock series,which are clustered at multiple points in lenticular shape,are important new natural gas exploration fields with great potential in the Upper Paleozoic of North China Craton.展开更多
Pore structure plays an important role in the gas storage and flow capacity of shale gas reservoirs. Fieldemission environmental scanning electron microscopy(FE-SEM) in combination with low-pressure carbon dioxide g...Pore structure plays an important role in the gas storage and flow capacity of shale gas reservoirs. Fieldemission environmental scanning electron microscopy(FE-SEM) in combination with low-pressure carbon dioxide gas adsorption(CO2GA),nitrogen gas adsorption(N2GA),and high-pressure mercury intrusion(HPMI) were used to study the nanostructure pore morphology and pore-size distributions(PSDs) of lacustrine shale from the Upper Triassic Yanchang Formation,Ordos Basin. Results show that the pores in the shale reservoirs are generally nanoscale and can be classified into four types: organic,interparticle,intraparticle,and microfracture. The interparticle pores between clay particles and organic-matter pores develop most often,l with pore sizes that vary from several to more than 100 nm. Mercury porosimetry analysis shows total porosities ranging between 1.93 and 7.68%,with a mean value of 5.27%. The BET surface areas as determined by N2 adsorption in the nine samples range from 10 to 20 m2/g and the CO2 equivalent surface areas(2 nm)vary from 18 to 71 m2/g. Together,the HPMI,N2 GA,and CO2 GA curves indicate that the pore volumes are mainly due to pores 100 nm in size. In contrast,however,most of the specific surface areas are provided by the micropores. The total organic carbon(TOC) and clay minerals are the primary controls of the structures of nanoscale pores(especially micropores and mesopores). Micropores are predominantly determined by the content of the TOC,and mesopores are possibly related to the content of clay minerals,particularly the illite-montmorillonite mixed-layer content.展开更多
It is important to predict the fracture distribution in the tight reservoirs of the Ordos Basin because fracturing is very crucial for the reconstruction of the low-permeability reservoirs. Three-dimensional finite el...It is important to predict the fracture distribution in the tight reservoirs of the Ordos Basin because fracturing is very crucial for the reconstruction of the low-permeability reservoirs. Three-dimensional finite element models are used to predict the fracture orientation and distribution of the Triassic Yanchang Formation in the Longdong area, southern Ordos Basin. The numerical modeling is based on the distribution of sand bodies in the Chang 7a and 72 members, and the different forces that have been exerted along each boundary of the basin in the Late Mesozoic and the Cenozoic. The calculated results demonstrate that the fracture orientations in the Late Mesozoic and the Ceno- zoic are NW-EW and NNE-ENE, respectively. In this paper, the two-factor method is applied to analyze the distribution of fracture density. The distribution maps of predicted fracture density in the Chang 71 and 72 members are obtained, indicating that the tectonic movement in the Late Mesozoic has a greater influence on the fracture development than that in the Cenozoic. The average fracture densities in the Chang 71 and 72 members are similar, but there are differences in their distributions. Compared with other geological elements, the lithology and the layer thickness are the primary factors that control the stress distribution in the study area, which further determine the fracture distribution in the stable Ordos Basin. The predicted fracture density and the two-factor method can be utilized to guide future exploration in the tight-sand reservoirs.展开更多
Based on the analysis of light hydrocarbon compositions of natural gas and regional comparison in combination with the chemical components and carbon isotopic compositions of methane,the indication of geochemical char...Based on the analysis of light hydrocarbon compositions of natural gas and regional comparison in combination with the chemical components and carbon isotopic compositions of methane,the indication of geochemical characteristics of light hydrocarbons on the migration features,dissolution and escape of natural gas from the Dongsheng gas field in the Ordos Basin is revealed,and the effect of migration on specific light hydrocarbon indexes is further discussed.The study indicates that,natural gas from the Lower Shihezi Formation(Pix)in the Dongsheng gas field displays higher iso-C5-7contents than n-C5-7contents,and the C6-7light hydrocarbons are composed of paraffins with extremely low aromatic contents(<0.4%),whereas the C7light hydrocarbons are dominated by methylcyclohexane,suggesting the characteristics of coal-derived gas with the influence by secondary alterations such as dissolution.The natural gas from the Dongsheng gas field has experienced free-phase migration from south to north and different degrees of dissolution after charging,and the gas in the Shiguhao area to the north of the Borjianghaizi fault has experienced apparent diffusion loss after accumulation.Long-distance migration in free phase results in the decrease of the relative contents of the methylcyclohexane in C7 light hydrocarbons and the toluene/n-heptane ratio,as well as the increase of the n-heptane/methylcyclohexane ratio and heptane values.The dissolution causes the increase of isoheptane values of the light hydrocarbons,whereas the diffusion loss of natural gas in the Shiguhao area results in the increase of n-C5-7contents compared to the iso-C5-7contents.展开更多
This work investigated the element distribution of perthite from the Upper Triassic Yanchang Formation tight sandstone in the Ordos Basin of northern China by field emission scanning electron microscopy(FE-SEM) and en...This work investigated the element distribution of perthite from the Upper Triassic Yanchang Formation tight sandstone in the Ordos Basin of northern China by field emission scanning electron microscopy(FE-SEM) and energy dispersive spectrometer(EDS). FE-SEM results indicate significant differences in the morphology of Na-rich feldspar when K-rich feldspar is the main component of the perthite. EDS results show that different types of perthite have clearly defined differences on different element indexes. Additionally, indexes such as average-weight-K(K-rich)/Na(Na-rich), maximumweight-K(Na-rich)/Na(Na-rich) and average-atomic-K(K-rich)/Na(Na-rich) might be the most effective ones to identify perthite types. Perthite is divided into six main types, i.e., perthite with thick parallel stripe distribution, with thin parallel stripe distribution, with lumpy stripe distribution, with dendritic stripe distribution, with encircling stripe distribution, and with mixed stripe distribution.展开更多
The authors of 'Genesis of the high gamma sandstone of the Yanchang Formation in the Ordos Basin, China' questioned the viewpoint that high-gamma-ray sandstone might be caused by homochronous sedimentary volcano tuf...The authors of 'Genesis of the high gamma sandstone of the Yanchang Formation in the Ordos Basin, China' questioned the viewpoint that high-gamma-ray sandstone might be caused by homochronous sedimentary volcano tuff ash or previous tuff. The authors argued that the main reason for the high-gamma-ray sandstone should be from high Th and U contents in zircon. In reply, we discuss the problems with the authors from the category of high-gamma-ray sandstones, rock characteristics, and possible sources of radioactivity. The results still indicate that the high gamma ray characteristics might be caused by homochronous sedimentary volcano tuff ash or reworked previous turfs.展开更多
基金Supported by the National Natural Science Foundation of China(42202176)CNPC-Southwest University of Petroleum Innovation Consortium Cooperation Project(2020CX050103).
文摘To clarify the formation and distribution of feldspar dissolution pores and predict the distribution of high-quality reservoir in gravity flow sandstone of the 7^(th) member of Triassic Yanchang Formation(Chang 7 Member)in the Ordos Basin,thin sections,scanning electron microscopy,energy spectrum analysis,X-ray diffraction whole rock analysis,and dissolution experiments are employed in this study to investigate the characteristics and control factors of feldspar dissolution pores.The results show that:(1)Three types of diagenetic processes are observed in the feldspar of Chang 7 sandstone in the study area:secondary overgrowth of feldspar,replacement by clay and calcite,and dissolution of detrital feldspar.(2)The feldspar dissolution of Chang 7 tight sandstone is caused by organic acid,and is further affected by the type of feldspar,the degree of early feldspar alteration,and the buffering effect of mica debris on organic acid.(3)Feldspars have varying degrees of dissolution.Potassium feldspar is more susceptible to dissolution than plagioclase.Among potassium feldspar,orthoclase is more soluble than microcline,and unaltered feldspar is more soluble than early kaolinized or sericitized feldspar.(4)The dissolution experiment demonstrated that the presence of mica can hinder the dissolution of feldspar.Mica of the same mass has a significantly stronger capacity to consume organic acids than feldspar.(5)Dissolution pores in feldspar of Chang 7 Member are more abundant in areas with low mica content,and they improve the reservoir physical properties,while in areas with high mica content,the number of feldspar dissolution pores decreases significantly.
基金founded by National Natural Science Foundation of China(grant Nos.:42072186 and 42090025)National Science and Technology Major Project,China(grant No.:2016ZX05046001)+3 种基金Science and Technology Research Project of Petro China Company Limited,China(grant No.:2021DJ1806)the fund support from China Scholarship Council(No.201806440002)the International Postdoctoral Exchange Fellowship Program,China(Talent-Introduction Program,No.270152)Lin Ma wishes to acknowledge the fund support from Natural Environment Research Council,United Kingdom(NE/R013527/1)。
文摘The mineralogical development and diagenetic sequence of lacustrine shales in the Chang 7 Member of the Yanchang Formation in the Ordos Basin are detailed studied.A model of their depositional system and a diagenetic diagram are proposed in this study.Through detailed petrographic,mineralogical,and elemental analyses,four distinct shale types are identified:argillaceous shale,siliceous shale,calcareous shale,and carbonate,clay,and silt-bearing shale.The main diagenetic process in argillaceous shale is the transformation of illite to smectite,negatively impacting shale porosity.Siliceous shale undergoes carbonate cementation and quartz dissolution,contributing to increased porosity,particularly in mesopores.Calcareous shale experiences diagenesis characterised by carbonate formation and dissolution,with a prevalence of siderite.In carbonate,clay,and silt-bearing shale,the dissolution of K-feldspar contributes to illitization of kaolinite.Argillaceous shale,characterised by more clay minerals and lower mesopore volume,is identified as a potential hydrocarbon seal.Siliceous shale,with the highest pore volume and abundant inter-mineral pores,emerges as a promising shale oil reservoir.These findings contribute to a comprehensive understanding of shale properties,aiding in the prediction of shale oil exploration potential in the studied area.
基金funded by the subproject of the National Science and Technology Major Project(No.2017ZX05036004).
文摘Through microscopic analyses(e.g.,organic macerals,thin section observation,scanning electron microscope(SEM)imaging of fresh bedding planes via argon ion milling,and energy spectrum tests)combined with Rock-Eval analyses,this study systematically investigated the organic matter and pyrites in the continental shales in the 3^(rd)submember of the Chang 7 Member(Chang 7^(3)submember)in the Yanchang Formation,Ordos Basin and determined their types and the formation and evolutionary characteristics.The results are as follows.The organic matter of the continental shales in the Chang 7^(3)submember is dominated by amorphous bituminites and migrabitumens,which have come into being since the early diagenetic stage and middle diagenetic stage A,respectively.The formation and transformation of organic matter is a prerequisite for the formation of pyrites.The Ordos Basin was a continental freshwater lacustrine basin and lacked sulphates in waters during the deposition of the Chang 7 Member.Therefore,the syndiagenetic stage did not witness the formation of large quantities of pyrites.Since the basin entered early diagenetic stage A,large quantities of sulfur ions were released as the primary organic matter got converted into bituminites and,accordingly,pyrites started to form.However,this stage featured poorer fluid and spatial conditions compared with the syndepositional stage due to withdraw of water,the partial formation of bituminites,and a certain degree of compaction.As a result,large quantities of pyrrhotite failed to transition into typical spherical framboidal pyrites but grew into euhedral monocrystal aggregates.In addition,pyrites are still visible in the migrabitumens in both microfractures and inorganic pores of mudstones and shales,indicating that the pyrite formation period can extend until the middle diagenetic stage A.
基金Supported by the PetroChina Science and Technology Major Project(2023ZZ18-03)Changqing Oilfield Major Science and Technology Project(2023DZZ01)。
文摘To explore the geological characteristics and exploration potential of the Carboniferous Benxi Formation coal rock gas in the Ordos Basin,this paper presents a systematic research on the coal rock distribution,coal rock reservoirs,coal rock quality,and coal rock gas features,resources and enrichment.Coal rock gas is a high-quality resource distinct from coalbed methane,and it has unique features in terms of burial depth,gas source,reservoir,gas content,and carbon isotopic composition.The Benxi Formation coal rocks cover an area of 16×104km^(2),with thicknesses ranging from 2 m to 25 m,primarily consisting of bright and semi-bright coals with primitive structures and low volatile and ash contents,indicating a good coal quality.The medium-to-high rank coal rocks have the total organic carbon(TOC)content ranging from 33.49%to 86.11%,averaging75.16%.They have a high degree of thermal evolution(Roof 1.2%-2.8%),and a high gas-generating capacity.They also have high stable carbon isotopic values(δ13C1of-37.6‰to-16‰;δ13C2of-21.7‰to-14.3‰).Deep coal rocks develop matrix pores such as gas bubble pores,organic pores,and inorganic mineral pores,which,together with cleats and fractures,form good reservoir spaces.The coal rock reservoirs exhibit the porosity of 0.54%-10.67%(averaging 5.42%)and the permeability of(0.001-14.600)×10^(-3)μm^(2)(averaging 2.32×10^(-3)μm^(2)).Vertically,there are five types of coal rock gas accumulation and dissipation combinations,among which the coal rock-mudstone gas accumulation combination and the coal rock-limestone gas accumulation combination are the most important,with good sealing conditions and high peak values of total hydrocarbon in gas logging.A model of coal rock gas accumulation has been constructed,which includes widespread distribution of medium-to-high rank coal rocks continually generating gas,matrix pores and cleats/fractures in coal rocks acting as large-scale reservoir spaces,tight cap rocks providing sealing,source-reservoir integration,and five types of efficient enrichment patterns(lateral pinchout complex,lenses,low-amplitude structures,nose-like structures,and lithologically self-sealing).According to the geological characteristics of coal rock gas,the Benxi Formation is divided into 8 plays,and the estimated coal rock gas resources with a buried depth of more than 2000 m are more than 12.33×10^(12)m^(3).The above understandings guide the deployment of risk exploration.Two wells drilled accordingly obtained an industrial gas flow,driving the further deployment of exploratory and appraisal wells.Substantial breakthroughs have been achieved,with the possible reserves over a trillion cubic meters and the proved reserves over a hundred billion cubic meters,which is of great significance for the reserves increase and efficient development of natural gas in China.
基金Supported by the PetroChina Science and Technology Innovation Fund Project(2021DQ02-1003)Basic Research Project for Central Universities(2022JCCXDC02).
文摘Through core observation,thin section identification,X-ray diffraction analysis,scanning electron microscopy,and low-temperature nitrogen adsorption and isothermal adsorption experiments,the lithology and pore characteristics of the Upper Carboniferous bauxite series in eastern Ordos Basin were analyzed to reveal the formation and evolution process of the bauxite reservoirs.A petrological nomenclature and classification scheme for bauxitic rocks based on three units(aluminum hydroxides,iron minerals and clay minerals)is proposed.It is found that bauxitic mudstone is in the form of dense massive and clastic structures,while the(clayey)bauxite is of dense massive,pisolite,oolite,porous soil and clastic structures.Both bauxitic mudstone and bauxite reservoirs develop dissolution pores,intercrystalline pores,and microfractures as the dominant gas storage space,with the porosity less than 10% and mesopores in dominance.The bauxite series in the North China Craton can be divided into five sections,i.e.,ferrilite(Shanxi-style iron ore,section A),bauxitic mudstone(section B),bauxite(section C),bauxite mudstone(debris-containing,section D)and dark mudstone-coal section(section E).The burrow/funnel filling,lenticular,layered/massive bauxite deposits occur separately in the karst platforms,gentle slopes and low-lying areas.The karst platforms and gentle slopes are conducive to surface water leaching,with strong karstification,well-developed pores,large reservoir thickness and good physical properties,but poor strata continuity.The low-lying areas have poor physical properties but relatively continuous and stable reservoirs.The gas enrichment in bauxites is jointly controlled by source rock,reservoir rock and fractures.This recognition provides geological basis for the exploration and development of natural gas in the Upper Carboniferous in the study area and similar bauxite systems.
基金Supported by the PetroChina Scientific Research and Technological Development Project(2021DJ0402).
文摘Through core observation,thin section identification,and logging and testing data analysis,the types and characteristics of event deposits in the ninth member of Yanchang Formation of Triassic(Chang 9 Member)in southwestern Ordos Basin,China,are examined.There are 4 types and 9 subtypes of event deposits,i.e.earthquake,gravity flow,volcanic and anoxic deposits,in the Chang 9 Member in the study area.Based on the analysis of the characteristics and distribution of such events deposits,it is proposed that the event deposits are generally symbiotic or associated,with intrinsic genetic relations and distribution laws.Five kinds of sedimentary microfacies with relatively developed event deposits are identified,and the genetic model of event deposits is discussed.Seismites are mainly developed in the lake transgression stage when the basin expands episodically,and commonly affected by liquefaction flow,gravity action and brittle shear deformation.Gravity flow,mainly distributed in the high water level period,sandwiched in the fine-grained sediments of prodelta or semi-deep lake,or creates banded or lobate slump turbidite fan.It is relatively developed above the seismites strata.The volcanic event deposits are only seen in the lower part of the Chang 9 Member,showing abrupt contact at the top and bottom,which reflects the volcanic activity at the same time.Anoxic deposits are mostly formed in the late stage of lake transgression to the highstand stage.Very thick organic-rich shales are developed in the highstand stage of Chang 9 Member,and the event deposits in the depositional period of these shales are conducive to potential reservoirs.
基金Supported by the CNPC Science and Technology Project (2021DJ1806)the National Key Basic Research and Development Program (973 Program),China (2014CB239003)。
文摘The geological characteristics and enrichment laws of the shale oil in the third submember of the seventh member of Triassic Yanchang Formation(Chang 7_(3)) in the Ordos Basin were analyzed by using the information of core observations, experiments and logging, and then the exploration potential and orientation of the Chang 7_(3) shale oil were discussed. The research findings are obtained in three aspects. First, two types of shale oil, i.e. migratory-retained and retained, are recognized in Chang 7_(3). The former is slightly better than the latter in quality. The migratory-retained shale oil reservoir is featured with the frequent interbedding and overlapping of silty-sandy laminae caused by sandy debris flow and low-density turbidity current and semi-deep-deep lacustrine organic-rich shale laminae. The retained shale oil reservoir is composed of black shale with frequent occurrence of bedding and micro-laminae. Second, high-quality source rocks provide a large quantity of hydrocarbon-rich high-quality fluids with high potential energy. The source-reservoir pressure difference provides power for oil accumulation in thin interbeds of organic-poor sandstones with good seepage conditions and in felsic lamina, tuffaceous lamina and bedding fractures in shales. Hydrocarbon generation-induced fractures, bedding fractures and microfractures provide high-speed pathways for oil micro-migration. Frequent sandstone interlayers and felsic laminae provide a good space for large-scale hydrocarbon accumulation, and also effectively improve the hydrocarbon movability. Third, sand-rich areas around the depression are the main targets for exploring migratory-retained shale oil. Mature deep depression areas are the main targets for exploring retained oil with medium to high maturity. Theoretical research and field application of in-situ conversion in low-mature deep depression areas are the main technical orientations for exploring retained shale oil with low to medium maturity.
基金supported by the Guiding Science and Technology Planning Project of Daqing(Grant No.zd-2021-36)Postdoctoral Scientific Research Developmental Fund of Heilongjiang Province,China(Grant No.LBH-Z21084)Natural Science Foundation of Heilongjiang Province(Grant No.LH 2022E019).
文摘The oil and gas potential of the Yan'an Formation in the Ordos Basin has yet to be fully tapped. In this study, the pore structure, mobile fluid saturation, and water flooding micro-mechanism of the Yan'an Formation sandstone are systematically studied through the application of a series of rock physics and fluid experiments. The results show that there is a good positive correlation between porosity and permeability, and the reservoirs are divided into types Ⅰ, Ⅱ, and Ⅲ. Mercury injection tests show that the average pore throat radius of the oil-bearing reservoir ranges from 1 to 7 μm. The displacement pressure of the Yan'an Formation is also relatively low, and it decreases from 0.1 MPa to 0.01 MPa as the rock porosity increases from 11% to 18%. NMR tests show that small (diameter <0.5 μm) and medium pores (diameter ranging from 0.5 to 2.5 μm) are predominant in the reservoir. Different types of reservoirs have different characteristics of relative permeability curve. In addition, when the average oil recovery rate is less than 1 ml/min, the oil displacement efficiency increases faster. However, when the average oil recovery rate is between 1–3.5 ml/min, the oil displacement efficiency is maintained at around 27%–30%. Physical properties of the reservoir, pore-throat structure, experimental pressure difference, and pore volume injected — all have significant effects on oil displacement efficiency. For Type Ⅰ and Type Ⅱ reservoirs, the increase of the pore volume injected has a significant effect on oil displacement efficiency. However, for Type Ⅲ reservoirs, the change of pore volume injected has insignificant effect on oil displacement efficiency. This study provides a reference for the formulation of estimated ultimate recovery (EUR) measures for similar sandstone reservoirs.
文摘Sandy debris flow is a new genetic type of sand bodies,which has gained much attention in recent years and its corresponding theory is proved to be a significant improvement and even partial denial to the 'Bouma Sequence' and 'turbidite fan' deep-water sedimentary theories to some point. Oil exploration researchers are highly concerned with sandy debris flows for its key role in controlling oil and gas accumulation processes.In this article,by applying sandy debris flows theory and combining a lot work of core,outcrop observation and analysis plus seismic profile interpretation,we recognized three types of sedimentary gravity flows that are sandy debris flows,classic turbidites and slumping rocks in chang-6 member of Yanchang Formation in the deep-water area of central Ordos Basin.Among the three types,the sandy debris flows are the most prominent and possesses the best oil bearing conditions.On the contrary,the classic turbidites formed by turbidity currents are limited in distribution;therefore,previous Yanchang Formation deep-water sedimentary studies have exaggerated the importance of turbidite currents deposition.Further study showed that the area distribution of deep water gravity flow sand bodies in Yanchang Formation were controlled by the slope of the deep-water deposits and the flows had vast distribution,huge depth and prevalent advantages for oil forming,which make it one of the most favorable new areas for Ordos Basin prospecting.
基金supported by the National Natural Science Foundation of China(No.40972098,41272168)China Postdoctoral Science Foundation(2012M511941)
文摘A better understanding of the controls on reservoir quality has become essential in the petroleum exploration in recent years. Determining the original composition of tile sediment framework is important not only for paleogeographic reconstructions, but it is also vital tbr predicting the nature of physical and chemical diagenesis of the potential reservoirs. Depositional setting and diagenesis are important factors in controlling the type and quality of most siliciclastic reservoirs. We studied the Upper Triassic Chang 8 and 6 members, where the relationship between sediment provenance and diagenesis was examined. The study attempts to clarify sediment provenance and post-depositional diagenetic modifications of the sandstones through systematic analytical methods including petrographic macro- and microscopic analysis of grain and heavy mineral types, and measurements of the palaeocurrent direction of the Yanchang Formation sediments in the outcrops in order to determine the provenance of the studied sediments. Furthermore, the relationship between framework grains, pore types and diagenesis of the sediments was analyzed by thin section petrographic characterization using a polarizing microscope. Additionally, a JEOL JSM-T330 scanning electron microscope (SEM) equipped with a digital imaging system was used to investigate the habits and textural relationships of diagenetic minerals. On the basis of our results, we believe that sediment provenance is a significant factor which controls the type and degree of diagenesis which may be expected in sandstones. In the Chang 8 and 6 members, tile formation of chlorite rims and laumontite cement was observed where volcanic rock fragments constitute a large part of the framework grains. Furthermore, high biotite content provides abundant iron and magnesium and enables the tbnnation of chlorite rims due to biotite hydrolysis. In addition, ductile deformation of biotite leads to strong mechanical compaction of the sediments. Conversely, high feldspar content diminishes the degree of mechanical compaction, however the dissolution of feldspar minerals in sandstones is commonly observed. Apart from feldspars, quartz and other rigid fi'amework grains highly control the degree of mechanical compaction during the initial stage of burial (0-2 km).
基金financially supported by the Fundamental Research Funds for the Central Universities(No.2015QNA69)the State Key Laboratory of Continental Tectonics and Dynamics(No.K201406)the PetroChina Major Science and Technology Project(No.2011E-2602)
文摘The distribution and intensity of tectonic fractures within geologic units are important to hydrocarbon exploration and development. Taken the Upper Triassic Yanchang Formation interbedded sandstone-mudstone in the Ordos Basin as an example, this study used the finite element method(FEM) based on geomechanical models to study the development of tectonic fractures. The results show that the sandstones tend to generate tectonic fractures more easily than mudstones with the same layer thickness, and the highest degree of tectonic fractures will be developed when the sandstone-mudstone thickness ratio is about 5.0. A possible explanation is proposed for the tectonic fracture development based on two important factors of rock brittleness and mechanical layer thickness. Generally, larger rock brittleness and thinner layer thickness will generate more tectonic fractures. In interbedded sandstone-mudstone formations, the rock brittleness increases with the increasing mechanical layer thickness, hence, these two factors will achieve a balance for the development of tectonic fractures when the sandstone-mudstone thickness ratio reaches a specific value, and the development degree of tectonic fractures is the highest at this value.
基金financially supported by the National Natural Science Foundation of China (grant No.41502147)Sichuan Province University Scientific Innovation Team Construction Project (USITCP)+1 种基金the Yong Scholars Development Fund of SWPU (grant No.201499010089)the National Science and Technology Major Project (grant No.2011ZX05001-001-04)
文摘This work aims to reveal the evolution of the porosity in the Triassic Yanchang Formation tight sandstone reservoir of the Xifeng-Ansai area of Ordos Basin. Based on destructive diagenesis (compaction and cementation) and constructive diagenesis (dissolution) of sandstone reservoirs, this study analyzed the diagenesis characteristics of the tight sandstone reservoirs in this area, and discussed the relationship between sandstone diagenesis and porosity evolution in combination with present porosity profile characteristics of sandstone reservoir. The effect simulation principle was employed for the mathematical derivation and simulation of the evolution of porosity in the Yanchang Formation tight sandstone reservoirs. The result shows that compaction always occurs in tight sandstone reservoirs in the Yanchang Formation, and cementation occurs when the burial depth increases to a certain value and remains ever since. Dissolution occurs only at a certain stage of the evolution with window features. In the corresponding present porosity profile, diagenesis is characterized by segmentation. From the shallow to the deep, compaction, compaction, cementation and dissolution, compaction and cementation occur successively. Therefore, the evolution of sandstone porosity can be divided into normal compaction section, acidification and incremental porosity section, and normal compaction section after dissolution. The results show that the evolution of sandstone porosity can be decomposed into porosity reduction model and porosity increase model. The superposition of the two models at the same depth in the three stages or in the same geological time can constitute the evolution simulation of the total porosity in sandstone reservoirs. By simulating the evolution of sandstone reservoir porosity of the eighth member in Xifeng area and the sixth member in Ansai area, it shows that they are similar in the evolution process and trend. The difference is caused by the regional uplift or subsidence and burial depth.
基金supported by the National Science and Technology Major Subject(No.2008ZX05044 2-8-2)"Large scale oil and gas field and coal bed methane development"
文摘Recently, more attention has been paid on the high gamma sandstone reservoirs of the Yanchang Formation in the Ordos Basin, China. These high gamma sandstones have logging characteristics different from conventional sandstones, which influences the identification of sandstone reservoirs. Zhang et al (2010) proposed that the high gamma sandstones of the Yanchang Formation might be the result of re-deposition of homochronous sedimentary tufts or previous tufts as a part of the sandstone. However, we present a different viewpoint: 1) few tufts or tuff debris have been found in the high gamma sandstones of the Yanchang Formation; 2) high gamma (or high Th content) sandstones of Yanchang Formation are not related to either clay minerals or feldspar; 3) the heavy minerals in the sandstone reservoirs of the Yanchang Formation are dominated by zircon, which is characterized by abnormally high Th and U contents, up to 2,163 ppm and 1,362 ppm, respectively. This is sufficient to explain the high gamma anomaly. The conclusion is that the high gamma value of the Yanchang Formation sandstones might be caused by zircon with high Th and U contents in sandstones rather than from the tuff components.
基金granted by the National Program on Key Basic Research Project(973 Program)(grant No. 2014CB239000)State Oil and Gas Major Project(grant No.2011ZX05001)+1 种基金CNPC Major Project(grant No. 2016B-0301-04)financially supported by the Ministry of Science and Technology of China
文摘The Upper Triassic oil accumulations in the Ordos Basin is the most successful tight oil play in China,with average porosity values of less than 10% and permeability values below 1.0 mD.This study investigated the geological characteristics and origin of the tight oil accumulations in the Chang 6 member of the Upper Triassic Yanchang Formation in the Shanbei area based on over 50,000 petrological,source-rock analysis,well logging and production data.The tight oil accumulation of the Chang 6 member is distributed continuously in the basin slope and the centre of the basin.The oilwater relationships are complex.Laumontite dissolution pores are the most important storage spaces,constituting 30%-60% of total porosity and showing a strong positive relationship with oil production.The pore-throat diameter is less than 1 μm,and the calculated critical height of the oil column is much larger than the tight sand thickness,suggesting that the buoyancy was probably of limited importance for oil migration.The pressure difference between the source rocks and sandstone reservoirs is inferred to have provided driving force for hydrocarbon migration.Two factors of source-reservoir configuration and laumontite dissolution contributed to the formation of the Chang 6 tight oil accumulations.Intense hydrocarbon generation and continuous sand bodies close to the hydrocarbon kitchen are the foundation for the large-scale oil distribution.Dissolution of feldspar-laumontite during the process of organic matter evolution generated abundant secondary pores and improved the reservoir quality.
基金Supported by the PetroChina Science and Technology Major Project(2021DJ2101).
文摘Based on the data of outcrop,core,logging,gas testing,and experiments,the natural gas accumulation and aluminous rock mineralization integrated research was adopted to analyze the controlling factors of aluminous rock series effective reservoirs in the Ordos Basin,NW China,as well as the configuration of coal-measure source rocks and aluminous rock series reservoirs.A natural gas accumulation model was constructed to evaluate the gas exploration potential of aluminous rock series under coal seam in the basin.The effective reservoirs of aluminous rock series in the Ordos Basin are composed of honeycomb-shaped bauxites with porous residual pisolitic and detrital structures,with the diasporite content of greater than 80%and dissolved pores as the main storage space.The bauxite reservoirs are formed under a model that planation controls the material supply,karst paleogeomorphology controls diagenesis,and land surface leaching improves reservoir quality.The hot humid climate and sea level changes in the Late Carboniferous–Early Permian dominated the development of a typical coal-aluminum-iron three-stage stratigraphic structure.The natural gas generated by the extensive hydrocarbon generation of coal-measure source rocks was accumulated in aluminous rock series under the coal seam,indicating a model of hydrocarbon accumulation under the source.During the Upper Carboniferous–Lower Permian,the relatively low-lying area on the edge of an ancient land or island in the North China landmass was developed.The gas reservoirs of aluminous rock series,which are clustered at multiple points in lenticular shape,are important new natural gas exploration fields with great potential in the Upper Paleozoic of North China Craton.
文摘Pore structure plays an important role in the gas storage and flow capacity of shale gas reservoirs. Fieldemission environmental scanning electron microscopy(FE-SEM) in combination with low-pressure carbon dioxide gas adsorption(CO2GA),nitrogen gas adsorption(N2GA),and high-pressure mercury intrusion(HPMI) were used to study the nanostructure pore morphology and pore-size distributions(PSDs) of lacustrine shale from the Upper Triassic Yanchang Formation,Ordos Basin. Results show that the pores in the shale reservoirs are generally nanoscale and can be classified into four types: organic,interparticle,intraparticle,and microfracture. The interparticle pores between clay particles and organic-matter pores develop most often,l with pore sizes that vary from several to more than 100 nm. Mercury porosimetry analysis shows total porosities ranging between 1.93 and 7.68%,with a mean value of 5.27%. The BET surface areas as determined by N2 adsorption in the nine samples range from 10 to 20 m2/g and the CO2 equivalent surface areas(2 nm)vary from 18 to 71 m2/g. Together,the HPMI,N2 GA,and CO2 GA curves indicate that the pore volumes are mainly due to pores 100 nm in size. In contrast,however,most of the specific surface areas are provided by the micropores. The total organic carbon(TOC) and clay minerals are the primary controls of the structures of nanoscale pores(especially micropores and mesopores). Micropores are predominantly determined by the content of the TOC,and mesopores are possibly related to the content of clay minerals,particularly the illite-montmorillonite mixed-layer content.
基金funded by the National Natural Science Foundations of China(Grant Nos.40772121 and 41530207)State Key Projects of Petroleum(Nos.2008ZX05029001,2011ZX05029-001 and 2014A0213)Research and Development Foundations of the Huaneng Clean Energy Research Institute(TY-15-CERI02)
文摘It is important to predict the fracture distribution in the tight reservoirs of the Ordos Basin because fracturing is very crucial for the reconstruction of the low-permeability reservoirs. Three-dimensional finite element models are used to predict the fracture orientation and distribution of the Triassic Yanchang Formation in the Longdong area, southern Ordos Basin. The numerical modeling is based on the distribution of sand bodies in the Chang 7a and 72 members, and the different forces that have been exerted along each boundary of the basin in the Late Mesozoic and the Cenozoic. The calculated results demonstrate that the fracture orientations in the Late Mesozoic and the Ceno- zoic are NW-EW and NNE-ENE, respectively. In this paper, the two-factor method is applied to analyze the distribution of fracture density. The distribution maps of predicted fracture density in the Chang 71 and 72 members are obtained, indicating that the tectonic movement in the Late Mesozoic has a greater influence on the fracture development than that in the Cenozoic. The average fracture densities in the Chang 71 and 72 members are similar, but there are differences in their distributions. Compared with other geological elements, the lithology and the layer thickness are the primary factors that control the stress distribution in the study area, which further determine the fracture distribution in the stable Ordos Basin. The predicted fracture density and the two-factor method can be utilized to guide future exploration in the tight-sand reservoirs.
基金Supported by the National Natural Science Foundation of China(42172149,U2244209)Sinopec Science and Technology Research Project(P23230,P22132)。
文摘Based on the analysis of light hydrocarbon compositions of natural gas and regional comparison in combination with the chemical components and carbon isotopic compositions of methane,the indication of geochemical characteristics of light hydrocarbons on the migration features,dissolution and escape of natural gas from the Dongsheng gas field in the Ordos Basin is revealed,and the effect of migration on specific light hydrocarbon indexes is further discussed.The study indicates that,natural gas from the Lower Shihezi Formation(Pix)in the Dongsheng gas field displays higher iso-C5-7contents than n-C5-7contents,and the C6-7light hydrocarbons are composed of paraffins with extremely low aromatic contents(<0.4%),whereas the C7light hydrocarbons are dominated by methylcyclohexane,suggesting the characteristics of coal-derived gas with the influence by secondary alterations such as dissolution.The natural gas from the Dongsheng gas field has experienced free-phase migration from south to north and different degrees of dissolution after charging,and the gas in the Shiguhao area to the north of the Borjianghaizi fault has experienced apparent diffusion loss after accumulation.Long-distance migration in free phase results in the decrease of the relative contents of the methylcyclohexane in C7 light hydrocarbons and the toluene/n-heptane ratio,as well as the increase of the n-heptane/methylcyclohexane ratio and heptane values.The dissolution causes the increase of isoheptane values of the light hydrocarbons,whereas the diffusion loss of natural gas in the Shiguhao area results in the increase of n-C5-7contents compared to the iso-C5-7contents.
基金funded by open fund of Key Laboratory of Petroleum Resources Research, Institute of Geology and Geophysics, Chinese Academy of Sciences (grant No. KLOR2018-6)the National Science and Technology Project of China (grant No. 2017ZX05013005-009)
文摘This work investigated the element distribution of perthite from the Upper Triassic Yanchang Formation tight sandstone in the Ordos Basin of northern China by field emission scanning electron microscopy(FE-SEM) and energy dispersive spectrometer(EDS). FE-SEM results indicate significant differences in the morphology of Na-rich feldspar when K-rich feldspar is the main component of the perthite. EDS results show that different types of perthite have clearly defined differences on different element indexes. Additionally, indexes such as average-weight-K(K-rich)/Na(Na-rich), maximumweight-K(Na-rich)/Na(Na-rich) and average-atomic-K(K-rich)/Na(Na-rich) might be the most effective ones to identify perthite types. Perthite is divided into six main types, i.e., perthite with thick parallel stripe distribution, with thin parallel stripe distribution, with lumpy stripe distribution, with dendritic stripe distribution, with encircling stripe distribution, and with mixed stripe distribution.
文摘The authors of 'Genesis of the high gamma sandstone of the Yanchang Formation in the Ordos Basin, China' questioned the viewpoint that high-gamma-ray sandstone might be caused by homochronous sedimentary volcano tuff ash or previous tuff. The authors argued that the main reason for the high-gamma-ray sandstone should be from high Th and U contents in zircon. In reply, we discuss the problems with the authors from the category of high-gamma-ray sandstones, rock characteristics, and possible sources of radioactivity. The results still indicate that the high gamma ray characteristics might be caused by homochronous sedimentary volcano tuff ash or reworked previous turfs.