期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Control of paleogeographic pattern on sedimentary differentiation of evaporite-carbonate symbiotic system:A case study of the sixth sub-member of Ordovician Majiagou Formation M5 Member in central-eastern Ordos Basin,NW China 被引量:2
1
作者 ZHONG Shoukang TAN Xiucheng +8 位作者 HU Guang NIE Wancai YANG Mengying ZHANG Daofeng ZHENG Jianfeng XU Jie DONG Guodong XIAO Di LU Zixing 《Petroleum Exploration and Development》 CSCD 2022年第4期837-850,共14页
The relationship between paleogeographic pattern and sedimentary differentiation of evaporite-carbonate symbiotic system is examined based on logging,core and thin section data,by taking the sixth sub-member of fifth ... The relationship between paleogeographic pattern and sedimentary differentiation of evaporite-carbonate symbiotic system is examined based on logging,core and thin section data,by taking the sixth sub-member of fifth member of Ordovician Majiagou Formation(M56)in the central-eastern Ordos Basin as an example.(1)Seven sub-geomorphic units(Taolimiao west low,Taolimiao underwater high,Taolimiao east low,Hengshan high,East salt low,North slope and Southwest slope)developed in the study area.(2)The“three lows”from west to east developed dolomitic restricted lagoon,evaporite evaporative lagoon and salt evaporative lagoon sedimentary facies respectively,the"two highs"developed high-energy grain beach and microbial mound,and the north and south slopes developed dolomitic flats around land.(3)The paleogeographic pattern caused natural differentiation of replenishment seawater from the northwest Qilian sea,leading to the eccentric sedimentary differentiation of dolomite,evaporite and salt rock symbiotic system from west to east,which is different from the classic“bull's eye”and“tear drop”distribution patterns.(4)As the Middle Qilian block subducted and collided into the North China Plate,the far-end compression stress transferred,giving rise to the alternate highland and lowland in near north to south direction during the sedimentary period of M56 sub-member.(5)Taolimiao underwater high and Hengshan high developed favorable zones of microbial mounds and grain shoals in south to north strike in M56 sub-member,making them favorable exploration areas with great exploration potential in the future. 展开更多
关键词 paleogeographic pattern sedimentary differentiation evaporite and carbonate rock favorable reservoir facies zone ordovician majiagou formation Ordos Basin
下载PDF
Tightness and sweet spot formation in moldic-pore-type dolomite reservoirs: The middle Ordovician Majiagou Formation in the eastern Ordos Basin, central China
2
作者 Tong Niu Kai Hu +3 位作者 Di Xiao Xing Gao Juanping Chen Jian Cao 《Petroleum》 CSCD 2019年第4期341-351,共11页
The diagenetic evolution of the moldic-pore-containing gypsum dolomites of the Middle Ordovician Majiagou Formation in the eastern Ordos Basin,central China,was studied by means of petrological,mineralogical,and geoch... The diagenetic evolution of the moldic-pore-containing gypsum dolomites of the Middle Ordovician Majiagou Formation in the eastern Ordos Basin,central China,was studied by means of petrological,mineralogical,and geochemical analyses,to improve our understanding of heterogeneity in high-quality reservoirs.The aim of the study was to elucidate the processes that resulted in reservoir tightness and the formation of sweet spots,to guide future exploration.Results show that the moldic-pore-containing gypsum dolomites are the most favorable reservoir in the study area,with a mean porosity of 4.96%and a mean permeability of 0.748 mD.The development and preservation of gypsum moldic pores were the main factors causing reservoir heterogeneity.Specifically,moldic pore development was controlled by the sedimentary microfacies,whereas pore preservation was related to dissolution and filling during telogenetic diagenesis.There were three main dissolution-filling stages that took place in three settings:penecontemporaneous,epigenetic,and burial.These processes controlled the formation of reservoir sweet spots.Early-consolidated dolomite deposits were frequently exposed to the atmosphere in the penecontemporaneous environment under the influence of high-frequency sedimentary cycles,which led to the dissolution of evaporite minerals and consequent formation of gypsum moldic pores,accompanied by infilling by freshwater calcite.During epigenesis,the porosity initially increased due to karstification,then significantly decreased because of calcite infilling resulting from long subaerial exposure(120 Myr),which contributed to reservoir heterogeneity.Finally,during burial the high-temperature and high-pressure conditions led to chemical compaction and continuous tightening of the reservoir,although some burial dissolution also took place.In conclusion,the variable paleo-topography resulted in differences in the intensity of pore filling among the blocks in the study area,resulting in reservoir heterogeneity. 展开更多
关键词 DOLOMITE Tight carbonate rock Gypsum moldic pores Dissolution Middle ordovician majiagou formation Ordos Basin
原文传递
Distribution and depositional model of microbial carbonates in the Ordovician middle assemblage,Ordos Basin,NW China
3
作者 WEI Liubin ZHAO Junxing +4 位作者 SU Zhongtang WEI Xinshan REN Junfeng HUANG Zhengliang WU Chunying 《Petroleum Exploration and Development》 CSCD 2021年第6期1341-1353,共13页
Based on outcrop profiles,drilling cores,cast thin sections etc.,the types,microfacies combinations and distribution pattern of microbial carbonates in the Ordovician middle assemblage of the mid-eastern Ordos Basin h... Based on outcrop profiles,drilling cores,cast thin sections etc.,the types,microfacies combinations and distribution pattern of microbial carbonates in the Ordovician middle assemblage of the mid-eastern Ordos Basin have been systematically analyzed.The middle assemblage of Ordovician in the mid-eastern Ordos Basin has microbial carbonates formed by the calci-fication of cyanobacteria,including microbial biostromes and microbial mounds made of stromatolites,thrombolites,and on-colites.The distribution of the carbonates shows obvious“stratum-control”and“regional”characteristics.The microbial bio-stromes 2–3 m thick each are controlled by sequence cycles and sedimentary facies changes,and were mainly formed in the tidal flat environment during the depositional stages of the Ma56 and Ma55 sub-members.The microbial biostrome in the Ma55 sub-member occurring near the carbonate-evaporite transition interface in the early stage of the transgression is distributed mainly in the Mizhi subsag in the eastern part of the basin;the microbial biostrome in the Ma56 sub-member turns up near the carbonate-evoporite transition zone in ring shape in the east of the central uplift.The ancient landform had noticeable control on the distribution of microbial mounds.The microbial mounds or mound-shoal complexes developing mainly during the de-positional stages of Ma57_Ma510 sub-members are about 15–25 m thick in single layer and distributed largely in the Wushenqi-Jingbian paleouplift.The development model of the microbial carbonate rocks shows that the carbonate-evaporite lithologic transition zone and the Wushenqi-Jingbian paleouplift are favorable exploration zones of microbial carbonates in the Ordovician middle assemblages. 展开更多
关键词 Ordos Basin ordovician majiagou formation microbial carbonates STROMATOLITE thrombolite ONCOLITE deposi-tional model
下载PDF
Distribution, evolution and structural properties of Wushenqi paleo-uplift in Ordos Basin, NW China
4
作者 MAO Danfeng HE Dengfa +5 位作者 BAO Hongping WEI Liubin XU Yanhua CHENG Xiang GOU Junyi WU Saijun 《Petroleum Exploration and Development》 SCIE 2023年第4期865-877,共13页
This paper depicts the distribution of the Wushenqi paleo-uplift in the Ordos Basin by using the latest drilling and seismic data, and analyzes the tectonic evolution of the paleo-uplift with the support of Bischke cu... This paper depicts the distribution of the Wushenqi paleo-uplift in the Ordos Basin by using the latest drilling and seismic data, and analyzes the tectonic evolution of the paleo-uplift with the support of Bischke curve and balanced section. The compressional Wushenqi paleo-uplift which developed in the Early Caledonian orogeny(Huaiyuan orogeny) is approximately a ellipse extending in S-N direction. Its long axis is about 194 km and short axis is about 55-94 km in nearly W-E direction. The denudation thickness and area of the Cambrian in the core are 170-196 m and 11 298 km^(2), respectively. It was mainly formed during the Huaiyuan orogeny according to the chronostratigraphic framework. It was in the embryonic stage in the Middle-Late Cambrian, denuded after developed obviously at the end of Late Cambrian. The paleo-uplift of the 3rd member of the Ordovician Majiagou Formation was reactivated and reduced in area. In the sedimentary period of the Ma 4 Member-pre-Carboniferous, the paleo-uplift experienced non-uniform uplift and denudation. It entered the stable period of burial and preservation in the Carboniferous and later period. The Wushenqi paleo-uplift was formed on the weak area of the basement and tectonic belts, into an compressional structure with irregular morphology, under the control of the non-coaxial compression in the south and north and the stress transmitted by the uplift in the basin. The Wushenqi paleo-uplift has a controlling effect on the sedimentary reservoirs and hydrocarbon accumulation. 展开更多
关键词 Ordos Basin Wushenqi paleo-uplift ordovician majiagou formation UNCONFORMITY Caledonian orogeny tectonic evolution
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部