期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Reaction condition optimization and kinetic investigation of roasting zinc oxide ore using (NH_4)_2SO_4 被引量:7
1
作者 Hong-mei Shao Xiao-yi Shen +2 位作者 Yi Sun Yan Liu Yu-chun Zhai 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2016年第10期1133-1140,共8页
An orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore using(NH_4)_2SO_4. The optimized reaction conditions are defined as an(NH_4)_2SO_4/zinc molar ratio of 1.4:1, a roasting ... An orthogonal test was used to optimize the reaction conditions of roasting zinc oxide ore using(NH_4)_2SO_4. The optimized reaction conditions are defined as an(NH_4)_2SO_4/zinc molar ratio of 1.4:1, a roasting temperature of 440°C, and a thermostatic time of 60 min. The molar ratio of(NH_4)_2SO_4/zinc is the most predominant factor and the roasting temperature is the second significant factor that governs the zinc extraction. Thermogravimetric-differential thermal analysis was used for(NH_4)_2SO_4 and zinc mixed in a molar ratio of 1.4:1 at the heating rates of 5, 10, 15, and 20 K·min-1. Two strong endothermic peaks indicate that the complex chemical reactions occur at approximately 290°C and 400°C. XRD analysis was employed to examine the transformations of mineral phases during roasting process. Kinetic parameters, including reaction apparent activation energy, reaction order, and frequency factor, were calculated by the Doyle-Ozawa and Kissinger methods. Corresponding to the two endothermic peaks, the kinetic equations were obtained. 展开更多
关键词 zinc ore treatment extractive metallurgy kinetic studies reaction mechanisms phase transformation reaction conditions
下载PDF
Optimization of reaction conditions for the electroleaching of manganese from low-grade pyrolusite 被引量:1
2
作者 Xing-ran Zhang Zuo-hua Liu +2 位作者 Xing Fan Xin Lian Chang-yuan Tao 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2015年第11期1121-1130,共10页
In the present study, a response surface methodology was used to optimize the electroleaching of Mn from low-grade pyrolusite. Ferrous sulfate heptahydrate was used in this reaction as a reducing agent in sulfuric aci... In the present study, a response surface methodology was used to optimize the electroleaching of Mn from low-grade pyrolusite. Ferrous sulfate heptahydrate was used in this reaction as a reducing agent in sulfuric acid solutions. The effect of six process variables, including the mass ratio of ferrous sulfate heptahydrate to pyrolusite, mass ratio of sulfuric acid to pyrolusite, liquid-to-solid ratio, current density, leaching temperature, and leaching time, as well as their binary interactions, were modeled. The results revealed that the order of these factors with respect to their effects on the leaching efficiency were mass ratio of ferrous sulfate heptahydrate to pyrolusite 〉 leaching time 〉 mass ratio of sulfuric acid to pyrolusite 〉 liquid-to-solid ratio 〉 leaching temperature 〉 current density. The optimum conditions were as follows: 1.10:1 mass ratio of ferrous sulfate heptahydrate to pyrolusite, 0.9:1 mass ratio of sulfuric acid to pyrolusite, liquid-to-solid ratio of 0.7:1, current density of 947 A/m^2, leaching time of 180 min, and leaching temperature of 73°C. Under these conditions, the predicted leaching efficiency for Mn was 94.1%; the obtained experimental result was 95.7%, which confirmed the validity of the model. 展开更多
关键词 pyrolusite manganese ore treatment electroleaching reaction conditions optimization
下载PDF
Studies of Metallic and Trace Minerals of the Tiegelongnan Cu-Au Deposit, Central Tibet, China 被引量:1
3
作者 HE Wen LIN Bin +1 位作者 YANG Huanhuan SONG Yingxin 《Acta Geologica Sinica(English Edition)》 CAS CSCD 2018年第3期1123-1138,共16页
Electron probe micro-analysis(EPMA) and scanning electron microscopy(SEM) equipped with energy dispersive spectrometry(EDS) have been used to investigate the principal ore minerals and coexisting metallic mineral incl... Electron probe micro-analysis(EPMA) and scanning electron microscopy(SEM) equipped with energy dispersive spectrometry(EDS) have been used to investigate the principal ore minerals and coexisting metallic mineral inclusions in polished thin sections from the Tiegelongnan deposit, which consists of a high-sulfidation epithermal system(HSES) and a porphyry system(PS). Molybdenite,chalcopyrite, bornite, tennantite, enargite, digenite, anilite, covellite, and tetrahedrite have been identified by EPMA. Intergrowth, cross-cutting and replacement relationships between the metallic minerals suggest that molybdenite formed first(stage 1),followed by chalcopyrite ± bornite ± hematite(stage 2),then bornite ± Cu-sulfides ± Cu-Fe-sulfoarsenides(stage 3),and lastly Cu-Fe-sulfoarsenides ±Cu-sulfides(stage 4). Pyrite is developed throughout all the stages. Droplet-like inclusions of Au-Te minerals commonly occur in tennantite but not in the other major sulfides(molybdenite, chalcopyrite and bornite),implying that tennantite is the most important Au telluride carrier. The pervasive binary equilibrium phases of calaverite and altaite constrain fin the range from ~-6.5 to ~-8 and f<-11.The intergrowth of bornite and chalcopyrite and the conversion from bornite to digenite suggest fluctuated and relatively low precipitation temperature conditions in the HSES relative to the PS.Contrastingly, the dominance of chalcopyrite in the PS, with minor bornite, suggests relatively high temperature conditions. These new results are important for further understanding the mineral formation processes superimposed by HSES and PS systems. 展开更多
关键词 paragenetic sequence Au-Te carriers ore forming conditions EPMA SEM-EDS TIBET China
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部