Numerical simulation studies on blasting in ore-pass with charge both 250 kg and 500 kg are carried out. Adopting fluid-solid coupling method, the whole process from detonating to shockwave transference in the ore-pas...Numerical simulation studies on blasting in ore-pass with charge both 250 kg and 500 kg are carried out. Adopting fluid-solid coupling method, the whole process from detonating to shockwave transference in the ore-pass reappears. The air shockwave's attenuation, chocking-up surface pressure and ore-wall press are analyzed. The results show that the biggest pressure of ore-wall happened at 0.43 m height, and the peak pressure are 167.0 MPa (250 kg) and 341.1 MPa (500 kg) individually. The choking-up zone's stress state from center to edge represents transition from press to strain, and the strain/press stress peak values are 9.2/ 4.8 MPa (250 kg) and 17.2/12.5 MPa (500 kg). The shockwave's attenuation values got from both experiential formula and simulation are compared, the experiential formula values are 2.54 - 3.49 times of the simulation results.展开更多
基金Sponsored by the National Natural Science Foundation of China(50874109)
文摘Numerical simulation studies on blasting in ore-pass with charge both 250 kg and 500 kg are carried out. Adopting fluid-solid coupling method, the whole process from detonating to shockwave transference in the ore-pass reappears. The air shockwave's attenuation, chocking-up surface pressure and ore-wall press are analyzed. The results show that the biggest pressure of ore-wall happened at 0.43 m height, and the peak pressure are 167.0 MPa (250 kg) and 341.1 MPa (500 kg) individually. The choking-up zone's stress state from center to edge represents transition from press to strain, and the strain/press stress peak values are 9.2/ 4.8 MPa (250 kg) and 17.2/12.5 MPa (500 kg). The shockwave's attenuation values got from both experiential formula and simulation are compared, the experiential formula values are 2.54 - 3.49 times of the simulation results.