The multi-phase particle swarm optimization (MPPSO) technique is applied to retrieve the particle size distribution (PSD) under dependent model. Based on the Mie theory and the Lambert-Beer theory, three PSDs, i.e...The multi-phase particle swarm optimization (MPPSO) technique is applied to retrieve the particle size distribution (PSD) under dependent model. Based on the Mie theory and the Lambert-Beer theory, three PSDs, i.e., the Rosin-Rammer (R-R) distribution, the normal distribution, and the logarithmic normal distribution, are estimated by MPPSO algorithm. The results confirm the potential of the proposed approach and show its effectiveness. It may provide a new technique to improve the accuracy and reliability of the PSD inverse calculation.展开更多
This work proposes a novel horizontal high-shear granulator for iron ore granulation before sintering process.The granulation behavior such as growth process and structure of granules were firstly analyzed,followed by...This work proposes a novel horizontal high-shear granulator for iron ore granulation before sintering process.The granulation behavior such as growth process and structure of granules were firstly analyzed,followed by the effects of operation conditions such as water content,initial particle size distribution,and the concentrate ratio.The results show that the granule size increased significantly with increasing the granulation time,and the structure of granule can be divided into three types:non-nuclei,single-nuclei,and multi-nuclei.Water promotes the coalescence and growth of particles,and a better granulation performance was obtained at the water content of 8.8wt%under the current raw material conditions.Increasing the nuclei particle ratio led to an increase in average size of granules and permeability of the granules bed,but a decrease in growth index.Besides,with increasing of concentrate ratio,granulation performance such as granule size,bed permeability,and uniformity became worse.展开更多
Gold catalysts supported on Mg-Al mixed oxides for oxidative esterification of methacrolein are prepared by impregnation.Effects of the support particle size,concentration of HAuCl4 solution and Mg/Al ratio on gold lo...Gold catalysts supported on Mg-Al mixed oxides for oxidative esterification of methacrolein are prepared by impregnation.Effects of the support particle size,concentration of HAuCl4 solution and Mg/Al ratio on gold loading and catalytic properties are investigated.The catalysts are characterized by CO_(2)-TPD,EDS,XPS,STEM and XRD techniques.Catalysts with smaller support particle size show more uniform gold distribution and higher gold dispersion,resulting in a higher catalytic performance,and the uniformity of gold and the activity of the catalysts with larger support particle size can be improved by decreasing the concentration of HAuCl4 solution.The Mg/Al molar ratio has significant effect on the uniformity of gold and the activity of the catalyst,and the optimum Mg/Al molar ratio is 0.1–0.2.This study underlines the importance of engineering support particle size,concentration of HAuCl4 solution and density of adsorption sites for efficient gold loading on support by impregnation.展开更多
Distributed photovoltaic(PV)systems play an important role in supplying many recent microgrids.The absence of reactive power support for these small-scale PV plants increases total microgrid losses and voltage-instabi...Distributed photovoltaic(PV)systems play an important role in supplying many recent microgrids.The absence of reactive power support for these small-scale PV plants increases total microgrid losses and voltage-instability threats.Reactive power compensations(RPCs)should be integrated to enhance both microgrid losses and voltage profiles.RPC planning is a non-linear,complicated problem.In this paper,a combined RPC allocation and sizing algorithm is proposed.The RPC-integrating buses are selected using a new adaptive approach of loss sensitivity analysis.In the sizing process,the uncertainties in PV power and load demand are modelled using proper probability density functions.Three simulation techniques for handling uncertainties are compared to define the accurate and fast accurate method as follows:Monte Carlo simulation(MCS),scenario tree construction and reduction method,and point estimation method(PEM).The load flow equations are solved using the forward-backward sweep method.RPCs are optimally sized using the beetle-antenna-based strategy with grey wolf optimization(BGWO)to overcome the local minima problem that appeared in the other pre-proposed methods.Results have been compared using particle swarm optimization and conventional GWO.The proposed model is verified using the IEEE 33 radial bus system.The expected power loss has been reduced by 22% and 31% using compensation of 26% and 44%,respectively.The results obtained prove that the BGWO optimal power flow and PEM to handle the uncertainty can significantly reduce the computation time with sufficient accuracy.Under the study conditions,PEM reduces the computation time to 4 minutes compared with 4 hours for MCS,with only a 3% error compared with MCS as an uncertainty benchmark method.展开更多
Severely deformed coal seams barely deliver satisfactory gas production. This research was undertaken to develop a new method to predict the positions of deformed coals for a horizontal CBM well. Firstly, the drilling...Severely deformed coal seams barely deliver satisfactory gas production. This research was undertaken to develop a new method to predict the positions of deformed coals for a horizontal CBM well. Firstly, the drilling cuttings of different structure coals were collected from a coal mine and compared. In light of the varying cuttings characteristics for different structure coals, the coal structure of the horizontally drilled coal seam was predicted. And the feasibility of this prediction method was discussed. The result shows that exogenetic fractures have an important influence on the deformation of coal seams. The hardness coefficient of coal decreases with the deformation degree in the order of primary structural, cataclastic and fragmented coal. And the expanding-ratio of gas drainage holes and the average particle size of cuttings increase with the increase of the deformation degree. The particle size distribution of coal cuttings for the three types of coals is distinctive from each other. Based on the particle size distribution of cuttings from X-2 well in a coal seam, six sections of fragmented coal which are unsuitable for perforating are predicted. This method may benefit the optimization of perforation and fracturing of a horizontal CBM well in the study area.展开更多
In this paper,the hybridization of standard particle swarm optimisation(PSO)with the analytical method(2/3 rd rule)is proposed,which is called as analytical hybrid PSO(AHPSO)algorithm used for the optimal siting and s...In this paper,the hybridization of standard particle swarm optimisation(PSO)with the analytical method(2/3 rd rule)is proposed,which is called as analytical hybrid PSO(AHPSO)algorithm used for the optimal siting and sizing of distribution generation.The proposed AHPSO algorithm is implemented to cater for uniformly distributed,increasingly distributed,centrally distributed,and randomly distributed loads in conventional power systems.To demonstrate the effectiveness of the proposed algorithm,the convergence speed and optimization performances of standard PSO and the proposed AHPSO algorithms are compared for two cases.In the first case,the performances of both the algorithms are compared for four different load distributions via an IEEE 10-bus system.In the second case,the performances of both the algorithms are compared for IEEE 10-bus,IEEE 33-bus,IEEE 69-bus systems,and a real distribution system of Korea.Simulation results show that the proposed AHPSO algorithm converges significantly faster than the standard PSO.The results of the proposed algorithm are compared with those of an analytical algorithm,and the results of them are similar.展开更多
The granulation behavior of iron ores is essential for subsequent parameter optimization and efficient granulation, especially under changing material conditions. In this study, the effects of surface properties and p...The granulation behavior of iron ores is essential for subsequent parameter optimization and efficient granulation, especially under changing material conditions. In this study, the effects of surface properties and particle size were analyzed using a laboratory granulation method; an estimation of the granulation of sintering blends was subsequently conducted for the base ores. Circularity and porosity were observed to negatively affect the granulation of iron ores, whereas wettability positively affected the granulation and was the most influential factor, indicating that wetting of iron ores is desirable during granulation. When iron ores with complex size distributions were granulated, the equivalent surface area was the main influencing factor for coarse particles larger than 1 mm and the ratio of adhering fines to intermediates was the main factor for fine particles smaller than 1 mm. By combining the granulation of coarse and fine particles with their proportioning, we proposed a calculation method for estimating the granulation ability of sintering blends. Good verification was demonstrated with the designed schemes. The results suggest that the developed method is effective for predicting the granulation of iron ore mixtures.展开更多
This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously a...This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.展开更多
Gold ore processing is often ineffective in obtaining gold metal. Various methods have been successfully developed on an industrial scale, but small-scale gold mines are often problematic. The problem of inefficiency ...Gold ore processing is often ineffective in obtaining gold metal. Various methods have been successfully developed on an industrial scale, but small-scale gold mines are often problematic. The problem of inefficiency of processing is caused by gold ore characterization and evaluation of gold ore preparation process is not implemented. In this study, the conditions of gold ore deposits have a thin thickness (vein). These gold ore deposits have an economic value if they are developed by traditional gold mining. The objective of the research is to identify and characterize gold ore as well as to analyze the optimum condition to obtain the perfect gold mineral liberation degree. Research methods include characterization of gold ore geology, sampling for test preparation using rod mill (amalgamation), gold mineral liberation using time variables and number of rods. After the grinding process, grain size analysis is performed with various mesh sizes, and the analysis of each fraction uses a polarization microscope. The results show that gold ore minerals are associated with pyrite, chalcopyrite, galena and gangue minerals. Gold minerals are fully liberated at a certain size. The results of this research are very useful for the gold ore grinding process to obtain an efficient gold processing.展开更多
The growth of wind energy penetration level in distribution system raises the concern about its impact on the operation of the power system, especially voltage stability and power loss. Among the major concerns, this ...The growth of wind energy penetration level in distribution system raises the concern about its impact on the operation of the power system, especially voltage stability and power loss. Among the major concerns, this paper studied the impact of connecting wind Turbine (WT) in radial distribution system with different penetration levels and different power factor (lead and lag) on power system voltage stability and power loss reduction. Load flow calculation was carried out using forward-backward sweep method. The analysis proceeds on 9- and 33-bus radial distribution systems. Results show that voltage stability enhancement and power loss reduction should be considered as WT installation objective.展开更多
医用压缩雾化器结构对呼吸系统疾病的雾化吸入治疗起决定作用。通过流体体积法-离散颗粒法(volume of fluid-discrete particle model,VOF-DPM)的方法,研究了医用压缩雾化器喷嘴结构、气体流速和液体通道宽度等对雾化效果的影响。结果表...医用压缩雾化器结构对呼吸系统疾病的雾化吸入治疗起决定作用。通过流体体积法-离散颗粒法(volume of fluid-discrete particle model,VOF-DPM)的方法,研究了医用压缩雾化器喷嘴结构、气体流速和液体通道宽度等对雾化效果的影响。结果表明,压缩雾化后液滴的动能和5μm以下的液滴粒径占比与气体流速成正比;随着液体通道宽度的增加,雾化后液滴的动能会增加,但是5μm以下的液滴粒径占比会相对减小;使用锥型破碎挡板结构,不仅能提升雾化后液滴的动能,而且能够使5μm以下的液滴粒径占比相比原来提升5%~7%。通过改变药液破碎挡板的形状,使得药液雾化后液滴直径在5μm以下的占比、药液雾化后液滴动能都有所增加,提升了雾化器的雾化效果。这些分析结果对后续医用压缩雾化器的性能表征和结构优化设计具有指导意义。展开更多
基金the National Natural Sci-ence Foundation of China (No.50576019)the Pro-gram for New Century Excellent Talents in University from the Ministry of Education of China.
文摘The multi-phase particle swarm optimization (MPPSO) technique is applied to retrieve the particle size distribution (PSD) under dependent model. Based on the Mie theory and the Lambert-Beer theory, three PSDs, i.e., the Rosin-Rammer (R-R) distribution, the normal distribution, and the logarithmic normal distribution, are estimated by MPPSO algorithm. The results confirm the potential of the proposed approach and show its effectiveness. It may provide a new technique to improve the accuracy and reliability of the PSD inverse calculation.
基金financially supported by the National Natural Science Foundation of China (Nos. 51974048 and 52004046)the China Postdoctoral Science Foundation (Nos. 2021T140783 and 2020M673131)the Postdoctoral Science Foundation of Chongqing (No. cstc2020jcyj-bsh X 0030)
文摘This work proposes a novel horizontal high-shear granulator for iron ore granulation before sintering process.The granulation behavior such as growth process and structure of granules were firstly analyzed,followed by the effects of operation conditions such as water content,initial particle size distribution,and the concentrate ratio.The results show that the granule size increased significantly with increasing the granulation time,and the structure of granule can be divided into three types:non-nuclei,single-nuclei,and multi-nuclei.Water promotes the coalescence and growth of particles,and a better granulation performance was obtained at the water content of 8.8wt%under the current raw material conditions.Increasing the nuclei particle ratio led to an increase in average size of granules and permeability of the granules bed,but a decrease in growth index.Besides,with increasing of concentrate ratio,granulation performance such as granule size,bed permeability,and uniformity became worse.
基金Open Project of Yunnan Precious Metals Laboratory Co.,Ltd(YPML-2023050269)the Fundamental Research Funds for the Central Universities(226-2023-00085,226-2023-00057).
文摘Gold catalysts supported on Mg-Al mixed oxides for oxidative esterification of methacrolein are prepared by impregnation.Effects of the support particle size,concentration of HAuCl4 solution and Mg/Al ratio on gold loading and catalytic properties are investigated.The catalysts are characterized by CO_(2)-TPD,EDS,XPS,STEM and XRD techniques.Catalysts with smaller support particle size show more uniform gold distribution and higher gold dispersion,resulting in a higher catalytic performance,and the uniformity of gold and the activity of the catalysts with larger support particle size can be improved by decreasing the concentration of HAuCl4 solution.The Mg/Al molar ratio has significant effect on the uniformity of gold and the activity of the catalyst,and the optimum Mg/Al molar ratio is 0.1–0.2.This study underlines the importance of engineering support particle size,concentration of HAuCl4 solution and density of adsorption sites for efficient gold loading on support by impregnation.
文摘Distributed photovoltaic(PV)systems play an important role in supplying many recent microgrids.The absence of reactive power support for these small-scale PV plants increases total microgrid losses and voltage-instability threats.Reactive power compensations(RPCs)should be integrated to enhance both microgrid losses and voltage profiles.RPC planning is a non-linear,complicated problem.In this paper,a combined RPC allocation and sizing algorithm is proposed.The RPC-integrating buses are selected using a new adaptive approach of loss sensitivity analysis.In the sizing process,the uncertainties in PV power and load demand are modelled using proper probability density functions.Three simulation techniques for handling uncertainties are compared to define the accurate and fast accurate method as follows:Monte Carlo simulation(MCS),scenario tree construction and reduction method,and point estimation method(PEM).The load flow equations are solved using the forward-backward sweep method.RPCs are optimally sized using the beetle-antenna-based strategy with grey wolf optimization(BGWO)to overcome the local minima problem that appeared in the other pre-proposed methods.Results have been compared using particle swarm optimization and conventional GWO.The proposed model is verified using the IEEE 33 radial bus system.The expected power loss has been reduced by 22% and 31% using compensation of 26% and 44%,respectively.The results obtained prove that the BGWO optimal power flow and PEM to handle the uncertainty can significantly reduce the computation time with sufficient accuracy.Under the study conditions,PEM reduces the computation time to 4 minutes compared with 4 hours for MCS,with only a 3% error compared with MCS as an uncertainty benchmark method.
基金funded by National Science and Technology Major Project of China (No. 2016ZX05067001-007)Shanxi Coalbased Scientific and Technological Key Project of China (No. MQ2014-04)+1 种基金Shanxi Provincial Basic Research Program-Coal Bed Methane Joint Research Foundation (No. 2015012014)Opening Foundation of Key Laboratory of Tectonics and Petroleum Resources (China University of Geosciences) Ministry of Education (No. TPR-2017-18)
文摘Severely deformed coal seams barely deliver satisfactory gas production. This research was undertaken to develop a new method to predict the positions of deformed coals for a horizontal CBM well. Firstly, the drilling cuttings of different structure coals were collected from a coal mine and compared. In light of the varying cuttings characteristics for different structure coals, the coal structure of the horizontally drilled coal seam was predicted. And the feasibility of this prediction method was discussed. The result shows that exogenetic fractures have an important influence on the deformation of coal seams. The hardness coefficient of coal decreases with the deformation degree in the order of primary structural, cataclastic and fragmented coal. And the expanding-ratio of gas drainage holes and the average particle size of cuttings increase with the increase of the deformation degree. The particle size distribution of coal cuttings for the three types of coals is distinctive from each other. Based on the particle size distribution of cuttings from X-2 well in a coal seam, six sections of fragmented coal which are unsuitable for perforating are predicted. This method may benefit the optimization of perforation and fracturing of a horizontal CBM well in the study area.
文摘In this paper,the hybridization of standard particle swarm optimisation(PSO)with the analytical method(2/3 rd rule)is proposed,which is called as analytical hybrid PSO(AHPSO)algorithm used for the optimal siting and sizing of distribution generation.The proposed AHPSO algorithm is implemented to cater for uniformly distributed,increasingly distributed,centrally distributed,and randomly distributed loads in conventional power systems.To demonstrate the effectiveness of the proposed algorithm,the convergence speed and optimization performances of standard PSO and the proposed AHPSO algorithms are compared for two cases.In the first case,the performances of both the algorithms are compared for four different load distributions via an IEEE 10-bus system.In the second case,the performances of both the algorithms are compared for IEEE 10-bus,IEEE 33-bus,IEEE 69-bus systems,and a real distribution system of Korea.Simulation results show that the proposed AHPSO algorithm converges significantly faster than the standard PSO.The results of the proposed algorithm are compared with those of an analytical algorithm,and the results of them are similar.
基金The financial supports of the National Natural Science Foundation of China (U1260202)the Fundamental Research Funds for the Central Universities of China (FRF-MP-12-003B)
文摘The granulation behavior of iron ores is essential for subsequent parameter optimization and efficient granulation, especially under changing material conditions. In this study, the effects of surface properties and particle size were analyzed using a laboratory granulation method; an estimation of the granulation of sintering blends was subsequently conducted for the base ores. Circularity and porosity were observed to negatively affect the granulation of iron ores, whereas wettability positively affected the granulation and was the most influential factor, indicating that wetting of iron ores is desirable during granulation. When iron ores with complex size distributions were granulated, the equivalent surface area was the main influencing factor for coarse particles larger than 1 mm and the ratio of adhering fines to intermediates was the main factor for fine particles smaller than 1 mm. By combining the granulation of coarse and fine particles with their proportioning, we proposed a calculation method for estimating the granulation ability of sintering blends. Good verification was demonstrated with the designed schemes. The results suggest that the developed method is effective for predicting the granulation of iron ore mixtures.
文摘This research develops a comprehensive method to solve a combinatorial problem consisting of distribution system reconfiguration, capacitor allocation, and renewable energy resources sizing and siting simultaneously and to improve power system's accountability and system performance parameters. Due to finding solution which is closer to realistic characteristics, load forecasting, market price errors and the uncertainties related to the variable output power of wind based DG units are put in consideration. This work employs NSGA-II accompanied by the fuzzy set theory to solve the aforementioned multi-objective problem. The proposed scheme finally leads to a solution with a minimum voltage deviation, a maximum voltage stability, lower amount of pollutant and lower cost. The cost includes the installation costs of new equipment, reconfiguration costs, power loss cost, reliability cost, cost of energy purchased from power market, upgrade costs of lines and operation and maintenance costs of DGs. Therefore, the proposed methodology improves power quality, reliability and security in lower costs besides its preserve, with the operational indices of power distribution networks in acceptable level. To validate the proposed methodology's usefulness, it was applied on the IEEE 33-bus distribution system then the outcomes were compared with initial configuration.
文摘Gold ore processing is often ineffective in obtaining gold metal. Various methods have been successfully developed on an industrial scale, but small-scale gold mines are often problematic. The problem of inefficiency of processing is caused by gold ore characterization and evaluation of gold ore preparation process is not implemented. In this study, the conditions of gold ore deposits have a thin thickness (vein). These gold ore deposits have an economic value if they are developed by traditional gold mining. The objective of the research is to identify and characterize gold ore as well as to analyze the optimum condition to obtain the perfect gold mineral liberation degree. Research methods include characterization of gold ore geology, sampling for test preparation using rod mill (amalgamation), gold mineral liberation using time variables and number of rods. After the grinding process, grain size analysis is performed with various mesh sizes, and the analysis of each fraction uses a polarization microscope. The results show that gold ore minerals are associated with pyrite, chalcopyrite, galena and gangue minerals. Gold minerals are fully liberated at a certain size. The results of this research are very useful for the gold ore grinding process to obtain an efficient gold processing.
文摘The growth of wind energy penetration level in distribution system raises the concern about its impact on the operation of the power system, especially voltage stability and power loss. Among the major concerns, this paper studied the impact of connecting wind Turbine (WT) in radial distribution system with different penetration levels and different power factor (lead and lag) on power system voltage stability and power loss reduction. Load flow calculation was carried out using forward-backward sweep method. The analysis proceeds on 9- and 33-bus radial distribution systems. Results show that voltage stability enhancement and power loss reduction should be considered as WT installation objective.
文摘医用压缩雾化器结构对呼吸系统疾病的雾化吸入治疗起决定作用。通过流体体积法-离散颗粒法(volume of fluid-discrete particle model,VOF-DPM)的方法,研究了医用压缩雾化器喷嘴结构、气体流速和液体通道宽度等对雾化效果的影响。结果表明,压缩雾化后液滴的动能和5μm以下的液滴粒径占比与气体流速成正比;随着液体通道宽度的增加,雾化后液滴的动能会增加,但是5μm以下的液滴粒径占比会相对减小;使用锥型破碎挡板结构,不仅能提升雾化后液滴的动能,而且能够使5μm以下的液滴粒径占比相比原来提升5%~7%。通过改变药液破碎挡板的形状,使得药液雾化后液滴直径在5μm以下的占比、药液雾化后液滴动能都有所增加,提升了雾化器的雾化效果。这些分析结果对后续医用压缩雾化器的性能表征和结构优化设计具有指导意义。