In this article,we comment on the paper by Kakinuma et al published recently.We focus specifically on the diagnosis of uterine pseudoaneurysm,but we also review other uterine vascular anomalies that may be the cause o...In this article,we comment on the paper by Kakinuma et al published recently.We focus specifically on the diagnosis of uterine pseudoaneurysm,but we also review other uterine vascular anomalies that may be the cause of life-threating hemorrhage and the different causes of uterine pseudoaneurysms.Uterine artery pseudoaneurysm is a complication of both surgical gynecological and nontraumatic procedures.Massive hemorrhage is the consequence of the rupture of the pseudoaneurysm.Uterine artery pseudoaneurysm can develop after obstetric or gynecological procedures,being the most frequent after cesarean or vaginal deliveries,curettage and even during pregnancy.However,there are several cases described unrelated to pregnancy,such as after conization,hysteroscopic surgery or laparoscopic myomectomy.Hemorrhage is the clinical manifestation and it can be life-threatening so suspicion of this vascular lesion is essential for early diagnosis and treatment.However,there are other uterine vascular anomalies that may be the cause of severe hemorrhage,which must be taken into account in the differential diagnosis.Computed tomography angiography and embolization is supposed to be the first therapeutic option in most of them.展开更多
BACKGROUND 2D-echocardiography(2DE)has been the primary imaging modality in children with Kawasaki disease(KD)to assess coronary arteries.AIM To report the presence and implications of incidental congenital coronary a...BACKGROUND 2D-echocardiography(2DE)has been the primary imaging modality in children with Kawasaki disease(KD)to assess coronary arteries.AIM To report the presence and implications of incidental congenital coronary artery anomalies that had been misinterpreted as coronary artery abnormalities(CAAs)on 2DE.METHODS Records of children diagnosed with KD,who underwent computed tomography coronary angiography(CTCA)at our center between 2013-2023 were reviewed.We identified 3 children with congenital coronary artery anomalies in this cohort on CTCA.Findings of CTCA and 2DE were compared in these 3 children.RESULTS Of the 241 patients with KD who underwent CTCA,3(1.24%)had congenital coronary artery anomalies on CTCA detected incidentally.In all 3 patients,baseline 2DE had identified CAAs.CTCA was then performed for detailed evaluation as per our unit protocol.One(11-year-boy)amongst the 3 patients had complete KD,while the other two(3.3-year-boy;4-month-girl)had incomplete KD.CTCA revealed separate origins of left anterior descending artery and left circumflex from left sinus[misinterpreted as dilated left main coronary artery(LCA)on 2DE],single coronary artery(interpreted as dilated LCA on 2DE)and dilated right coronary artery on 2DE in case of anomalous origin of LCA from the main pulmonary artery.The latter one was subsequently operated upon.CONCLUSION CTCA is essential for detailed assessment of coronary arteries in children with KD especially in cases where there is suspicion of congenital coronary artery anomalies.Relying solely on 2DE may not be sufficient in such cases,and findings from CTCA can significantly impact therapeutic decision-making.展开更多
Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-di...Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.展开更多
El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been develope...El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been developed to simulate and predict it.In some simplified coupled ocean-atmosphere models,the relationship between sea surface temperature(SST)anomalies and wind stress(τ)anomalies can be constructed by statistical methods,such as singular value decomposition(SVD).In recent years,the applications of artificial intelligence(AI)to climate modeling have shown promising prospects,and the integrations of AI-based models with dynamical models are active areas of research.This study constructs U-Net models for representing the relationship between SSTAs andτanomalies in the tropical Pacific;the UNet-derivedτmodel,denoted asτUNet,is then used to replace the original SVD-basedτmodel of an intermediate coupled model(ICM),forming a newly AI-integrated ICM,referred to as ICM-UNet.The simulation results obtained from ICM-UNet demonstrate their ability to represent the spatiotemporal variability of oceanic and atmospheric anomaly fields in the equatorial Pacific.In the ocean-only case study,theτUNet-derived wind stress anomaly fields are used to force the ocean component of the ICM,the results of which also indicate reasonable simulations of typical ENSO events.These results demonstrate the feasibility of integrating an AI-derived model with a physics-based dynamical model for ENSO modeling studies.Furthermore,the successful integration of the dynamical ocean models with the AI-based atmospheric wind model provides a novel approach to ocean-atmosphere interaction modeling studies.展开更多
Long-wavelength(>500 km)magnetic anomalies originating in the lithosphere were first found in satellite magnetic surveys.Compared to the striking magnetic anomalies around the world,the long-wavelength magnetic ano...Long-wavelength(>500 km)magnetic anomalies originating in the lithosphere were first found in satellite magnetic surveys.Compared to the striking magnetic anomalies around the world,the long-wavelength magnetic anomalies in China and surrounding regions are relatively weak.Specialized research on each of these anomalies has been quite inadequate;their geological origins remain unclear,in particular their connection to tectonic activity in the Chinese and surrounding regions.We focus on six magnetic high anomalies over the(1)Tarim Basin,(2)Sichuan Basin(3)Great Xing’an Range,(4)Barmer Basin,(5)Central Myanmar Basin,and(6)Sunda and Banda Arcs,and a striking magnetic low anomaly along the southern part of the Himalayan-Tibetan Plateau.We have analyzed their geological origins by reviewing related research and by detailed comparison with geological results.The tectonic backgrounds for these anomalies belong to two cases:either ancient basin basement,or subduction-collision zone.However,the geological origins of large-scale regional magnetic anomalies are always subject to dispute,mainly because of limited surface exposure of sources,later tectonic destruction,and superposition of multi-phase events.展开更多
Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the...Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results.展开更多
BACKGROUND: Dental anomalies are variations from the established well-known general anatomy and morphology of the tooth as a result of disturbances during tooth formation. They can be developmental, congenital, or acq...BACKGROUND: Dental anomalies are variations from the established well-known general anatomy and morphology of the tooth as a result of disturbances during tooth formation. They can be developmental, congenital, or acquired and may be localized to a single tooth or involve systemic conditions. AIM: To evaluate the prevalence of dental anomalies in patients who report to the Komfo Anokye Teaching Hospital (KATH) dental clinics. METHOD: A descriptive cross-sectional design was used with a sample size of 92 patients aged 18 or older, obtained through convenience sampling. Data analysis was performed using SPSS version 26.0. RESULTS: The study included 92 patients aged 18 to 72 years, with 47.8% males and 52.2% females. Dental anomalies were observed in 51.1% of participants, with a higher prevalence in females (55.3%). The most common anomalies were diastema (48.3%), impacted teeth (22.0%), dilaceration (11.9%), and peg-shaped lateral teeth (6.8%). CONCLUSION: This study highlights the importance of conducting thorough dental examinations to identify and address dental anomalies, which may have implications for treatment. Early detection and correction of these anomalies are crucial to prevent future complications.展开更多
Objective:Coronary artery anatomical variations and anomalies are an important topic due to their potential clinical manifestations.This study aims to investigate the prevalence of coronary artery anatomical variation...Objective:Coronary artery anatomical variations and anomalies are an important topic due to their potential clinical manifestations.This study aims to investigate the prevalence of coronary artery anatomical variations and anomalies in symptomatic patients with coronary computed tomography angiography(CCTA).Methods:This is a retrospective study that included all symptomatic patients who had CCTA in a tertiary care hospital in Saudi Arabia during a period of seven years.Results:The total number of included patients was 507(60%males)with a mean age of 57.4 years.Approximately 41%had luminal stenoses,averaging 49.7%.The total num-ber of patients with coronary anatomical variations(CAV)and coronary artery anomalies(CAA)was 217(43%).CAV prevalence was 26%,which included 14%non-right coronary dominance,5%short left main coronary artery(LMCA),and 7%division variations(trifurcation and quadrifurcarion)of the LMCA.The prevalence of CAA was 29%,which included 5%origin anomalies,22%myocardial bridge,and 2%course anomalies.Conclusions:A high prevalence of coronary artery anatomic variations and anomalies in symptomatic patients is reported in this study.Systematic reviews,meta-analyses,reporting guidelines,and unified definitions and classifications of cor-onary variations and anomalies are lacking in the literature,presenting potential opportunities for future research and publications.展开更多
The Ziyoutun Cu-Au district is located in the Jizhong–Yanbian Metallogenic Belt and possesses excellent prospects. However, the thick regolith and complex tectonic settings present challenges in terms of detecting an...The Ziyoutun Cu-Au district is located in the Jizhong–Yanbian Metallogenic Belt and possesses excellent prospects. However, the thick regolith and complex tectonic settings present challenges in terms of detecting and decomposition of weak geochemical anomalies. To address this challenge, we initially conducted a comprehensive analysis of 1:10,000-scale soil geochemical data. This analysis included multivariate statistical techniques, such as correlation analysis, R-mode cluster analysis, Q–Q plots and factor analysis. Subsequently, we decomposed the geochemical anomalies, identifying weak anomalies using spectrum-area modeling and local singularity analysis. The results indicate that the assemblage of Au-Cu-Bi-As-Sb represents the mineralization at Ziyoutun. In comparison to conventional methods, spectrumarea modeling and local singularity analysis outperform in terms of identification of anomalies. Ultimately, we considered four specific target areas(AP01, AP02, AP03 and AP04) for future exploration, based on geochemical anomalies and favorable geological factors. Within AP01 and AP02, the geochemical anomalies suggest potential mineralization at depth, whereas in AP03 and AP04 the surface anomalies require additional geological investigation. Consequently, we recommend conducting drilling, following more extensive surface fieldwork, at the first two targets and verifying surface anomalies in the last two targets. We anticipate these findings will significantly enhance future exploration in Ziyoutun.展开更多
Apart from listening to the cry of a healthy newborn,it is the declaration by the attending paediatrician in the labour room that the child is normal which brings utmost joy to parents.The global incidence of children...Apart from listening to the cry of a healthy newborn,it is the declaration by the attending paediatrician in the labour room that the child is normal which brings utmost joy to parents.The global incidence of children born with congenital anomalies has been reported to be 3%-6%with more than 90%of these occurring in low-and middle-income group countries.The exact percentages/total numbers of children requiring surgical treatment cannot be estimated for several reasons.These children are operated under several surgical disciplines,viz,paediatric-,plastic reconstructive,neuro-,cardiothoracic-,orthopaedic surgery etc.These conditions may be life-threatening,e.g.,trachea-oesophageal fistula,critical pulmonary stenosis,etc.and require immediate surgical intervention.Some,e.g.,hydrocephalus,may need intervention as soon as the patient is fit for surgery.Some,e.g.,patent ductus arteriosus need‘wait and watch’policy up to a certain age in the hope of spontaneous recovery.Another extremely important category is that of patients where the operative intervention is done based on their age.Almost all the congenital anomalies coming under care of a plastic surgeon are operated as elective surgery(many as multiple stages of correction)at appropriate ages.There are advantages and disadvantages of intervention at different ages.In this article,we present a review of optimal timings,along with reasoning,for surgery of many of the common congenital anomalies which are treated by plastic surgeons.Obstetricians,paediatricians and general practitioners/family physicians,who most often are the first ones to come across such children,must know to guide the parents appropriately and convincingly impress upon the them as to why their child should not be operated immediately and also the consequences of too soon or too late.展开更多
The Northeastern China cold vortex(NCCV)is one type of strong cyclonic vortex that occurs near Northeastern China(NEC),and NCCV activities are typically accompanied by a series of hazardous weather.This paper employed...The Northeastern China cold vortex(NCCV)is one type of strong cyclonic vortex that occurs near Northeastern China(NEC),and NCCV activities are typically accompanied by a series of hazardous weather.This paper employed an automatic algorithm to identify the NCCVs from 1979 to 2018 and analyzed their circulation patterns and climatic impacts by using the defined NCCV intensity index(NCCVI).The analysis revealed that the NCCV activities in summer exhibited a strong inter-annual variability,with an obvious periodicity of 3-4 years and 6-7 years,but without significant trends.In years when the NCCVI was high,NEC experienced negative geopotential height anomalies,cyclonic circulation,and cooler temperature anomalies,which were conducive to the maintenance and development of NCCV activities.Furthermore,large amounts of water vapor converged in NEC through two transportation routes as the NCCVs intensified,leading to a significant positive(negative)correlation with the summer precipitation(surface temperature)in NEC.The Atlantic sea surface temperature(SST)anomalies were closely related to summer NCCV activities.As the Atlantic SST rose,large amounts of surface sensible and latent heat flux were transported into the lower troposphere,inducing a positive geopotential height anomaly that occurred on the east side of the heat source.As a result,an eastward diverging flow was formed in the upper troposphere and propagated downstream,i.e.,the eastward propagating Rossby wave train,which eventually led to a coupled circulation in the Ural Mountains and NEC,as well as more intensive NCCV activities in summer.展开更多
Understanding the relationship between rainfall anomalies and large-scale systems is critical for driving adaptation and mitigation strategies in socioeconomic sectors. This study therefore aims primarily to investiga...Understanding the relationship between rainfall anomalies and large-scale systems is critical for driving adaptation and mitigation strategies in socioeconomic sectors. This study therefore aims primarily to investigate the correlation between rainfall anomalies in Rwanda during the months of September to December (SOND) with the occurrences of Indian Ocean Dipole (IOD) and El Nino Southern Oscillation (ENSO) events. The study is useful for early warning and forecasting of negative effects associated with extreme rainfall anomalies across the country, using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), the National Centers for Environmental Prediction (NCEP) National Center for Atmospheric Research (NCAR) reanalysis sea surface temperature and ERA5 reanalysis datasets, during the period of 1983-2021. Both empirical orthogonal function (EOF), correlation analysis and composite analysis were used to delineate variability, relationship and the related atmospheric circulation between Rwanda seasonal rainfall September to December (SOND) with Indian Ocean Dipole (IOD) and El-Nino Southern Oscillation (ENSO). The results for Empirical Orthogonal Function (EOF) for the reconstructed rainfall data set showed three modes. EOF-1, EOF-2 and EOF-3 with their total variance of 63.6%, 16.5% and 4.8%, Indian ocean dipole (IOD) events resulted to a strong positive correlation of rainfall anomalies and Dipole model index (DMI) (r = 0.42, p value = 0.001, DF = 37) significant at 95% confidence level. The composite analysis for the reanalysis dataset was carried out to show the circulation patterns during four different events correlated with September to December seasonal rainfall in Rwanda using T-test at 95% confidence level. Wind anomaly revealed that there was a convergence of south westerly winds and easterly wind over the study area during positive Indian Ocean Diploe (PIOD) and PIOD with El Nino concurrence event years. The finding of this study will contribute to the enhancement of SOND seasonal rainfall forecasting and the reduction of vulnerability during IOD (ENSO) event years.展开更多
The occurrence of earthquakes is closely related to the crustal geotectonic movement and the migration of mass,which consequently cause changes in gravity.The Gravity Recovery And Climate Experiment(GRACE)satellite da...The occurrence of earthquakes is closely related to the crustal geotectonic movement and the migration of mass,which consequently cause changes in gravity.The Gravity Recovery And Climate Experiment(GRACE)satellite data can be used to detect gravity changes associated with large earthquakes.However,previous GRACE satellite-based seismic gravity-change studies have focused more on coseismic gravity changes than on preseismic gravity changes.Moreover,the noise of the north–south stripe in GRACE data is difficult to eliminate,thereby resulting in the loss of some gravity information related to tectonic activities.To explore the preseismic gravity anomalies in a more refined way,we first propose a method of characterizing gravity variation based on the maximum shear strain of gravity,inspired by the concept of crustal strain.The offset index method is then adopted to describe the gravity anomalies,and the spatial and temporal characteristics of gravity anomalies before earthquakes are analyzed at the scales of the fault zone and plate,respectively.In this work,experiments are carried out on the Tibetan Plateau and its surrounding areas,and the following findings are obtained:First,from the observation scale of the fault zone,we detect the occurrence of large-area gravity anomalies near the epicenter,oftentimes about half a year before an earthquake,and these anomalies were distributed along the fault zone.Second,from the observation scale of the plate,we find that when an earthquake occurred on the Tibetan Plateau,a large number of gravity anomalies also occurred at the boundary of the Tibetan Plateau and the Indian Plate.Moreover,the aforementioned experiments confirm that the proposed method can successfully capture the preseismic gravity anomalies of large earthquakes with a magnitude of less than 8,which suggests a new idea for the application of gravity satellite data to earthquake research.展开更多
Magnetic anomalies are often disturbed by the magnetization direction, so we can't directly use the original magnetic anomaly to estimate the exact location and geometry of the source. The 2D analytic signal is insen...Magnetic anomalies are often disturbed by the magnetization direction, so we can't directly use the original magnetic anomaly to estimate the exact location and geometry of the source. The 2D analytic signal is insensitive to magnetization direction. In this paper, we present an automatic method based on the analytic signal horizontal and vertical derivatives to interpret the magnetic anomaly. We derive a linear equation using the analytic signal properties and we obtain the 2D magnetic body location parameters without giving a priori information. Then we compute the source structural index (expressing the geometry) by the estimated location parameters. The proposed method is demonstrated on synthetic magnetic anomalies with noise. For different models, the proposed technique can both successfully estimate the location parameters and the structural index of the sources and is insensitive to noise. Lastly, we apply it to real magnetic anomalies from China and obtain the distribution of unexploited iron ore. The inversion results are consistent with the parameters of known ore bodies.展开更多
In order to enhance geological body boundary visual effects in images and improve interpretation accuracy using gravity and magnetic field data, we propose an improved small sub-domain filtering method to enhance grav...In order to enhance geological body boundary visual effects in images and improve interpretation accuracy using gravity and magnetic field data, we propose an improved small sub-domain filtering method to enhance gravity anomalies and gravity gradient tensors. We discuss the effect of Gaussian white noise on the improved small sub-domain filtering method, as well as analyze the effect of window size on geological body edge recognition at different extension directions. Model experiments show that the improved small sub-domain filtering method is less affected by noise, filter window size, and geological body edge direction so it can more accurately depict geological body edges than the conventional small sub-domain filtering method. It also shows that deeply buried body edges can be well delineated through increasing the filter window size. In application, the enhanced gravity anomalies and calculated gravity gradient tensors of the Hulin basin show that the improved small sub-domain filtering can recognize more horizontal fault locations than the conventional method.展开更多
Edge detection is an image processing technique for finding the boundaries of objects within images. It is typically used to interpret gravity and magnetic data, and find the horizontal boundaries of geological bodies...Edge detection is an image processing technique for finding the boundaries of objects within images. It is typically used to interpret gravity and magnetic data, and find the horizontal boundaries of geological bodies. Large deviations between model and true edges are common because of the interference of depth and errors in computing the derivatives; thus, edge detection methods cannot provide information about the depth of the source. To simultaneously obtain the horizontal extent and depth of geophysical anomalies, we use normalized edge detection filters, which normalize the edge detection function at different depths, and the maxima that correspond to the location of the source. The errors between model and actual edges are minimized as the depth of the source decreases and the normalized edge detection method recognizes the extent of the source based on the maxima, allowing for reliable model results. We demonstrate the applicability of the normalized edge detection filters in defining the horizontal extent and depth using synthetic and actual aeromagnetic data.展开更多
The observed data of the sea surface temperature (SST) anomalies and the sea temperature (ST) in the sub-layer of the equatorial Pacific, the NCEP/ NCAR reanalysis data and the data set of daily precipitation in China...The observed data of the sea surface temperature (SST) anomalies and the sea temperature (ST) in the sub-layer of the equatorial Pacific, the NCEP/ NCAR reanalysis data and the data set of daily precipitation in China are used to analyze the characteristics of the 1997 / 98 ENSO cycle and its impact on summer climate anomalies in East Asia. The results show that the 1997/98 ENSO cycle, the strongest one in the 20th century, might be characterized by rapid development and decay and eastward propagation from the West Pacific warm pool. Influenced by the ENSO cycle, in 1997, the serious drought and hot summer occurred in North China, and in the summer of 1998, the severe floods occurred in the Yangtze River valley, especially in the Dongting Lake and Boyang Lake valleys, South Korea and Japan. The analysis also shows that: influenced by the 1997/98 ENSO cycle, the water vapor transportation by the Asian monsoon in the summer of 1997 was very different from that in the summer of 1998. In the summer of 1997, the water vapor transportation by the Asian summer monsoon was weak in North China and the northern part of the Korea Peninsula. Thus, it caused the drought and hot summer in North China. However, in the summer of 1998, the sea temperature in the sub-layer of the West Pacific warm pool dropped, the western Pacific subtropical high shifted southward. Thus, a large amount of water vapor was transported from the Bay of Bengal, the South China Sea and the tropical western Pacific into the Yangtze River valley of China, South Korea and Japan, and the severe flood occurred there. Key words ENSO cycle - Climate anomaly - Monsoon - Drought and flood This study was supported by the National Key Programme for Developing Basic Sciences under Grant No. G1998040900(I).展开更多
Using the data of 500 hPa geopotential height from 1951 to 1995, SST roughly in the same period and OLR data from 1974 to 1994, the relation between the anomalies of subtropical high (STH for short) and the tropical c...Using the data of 500 hPa geopotential height from 1951 to 1995, SST roughly in the same period and OLR data from 1974 to 1994, the relation between the anomalies of subtropical high (STH for short) and the tropical circulations including the Asian monsoon as well as the convective activity are studied. In order to study the physical process of the air-sea interaction related to STH anomaly, the correlation of STH with SST at various sea areas, lagged and simultaneous, has been calculated. Comparing the difference of OLR, wind fields, vertical circulations and SST anomalies in the strong and weak STH, we investigate the characteristics of global circulations and the SST distributions related to the anomalous STH at the western Pacific both in winter and summer. Much attention has been paid to the study of the air-sea interaction and the relationship between the East Asian monsoon and the STH in the western Pacific. A special vertical circulation, related to the STH anomalies is found, which connects the monsoon current to the west and the vertical flow influenced by the SST anomaly in the tropical eastern Pacific.展开更多
All the indium-rich deposits with indium contents in ores more than 100×10^-6 seems to be of cassiterite-sulfide deposits or Sn-bearing Pb-Zn deposits, e.g., in the Dachang Sn deposit in Guangxi, the Dulong Sn-Zn...All the indium-rich deposits with indium contents in ores more than 100×10^-6 seems to be of cassiterite-sulfide deposits or Sn-bearing Pb-Zn deposits, e.g., in the Dachang Sn deposit in Guangxi, the Dulong Sn-Zn deposit in Yunnan, and the Meng'entaolegai Ag-Pb-Zn deposit in Inner Mongolia, the indium contents in ores range from 98×10^-6 to 236×10^-6 and show a good positive correlation with contents of zinc and tin, and their correlation coefficients are 0.8781 and 0.7430, respectively. The indium contents from such Sn-poor deposits as the Fozichong Pb-Zn deposit in Guangxi and the Huanren Pb-Zn deposit in Liaoning are generally lower than 10×10^-6, i.e., whether tin is present or not in a deposit implies the enrichment extent of indium in ores. Whether the In enrichment itself in the ore -forming fluids or the ore-forming conditions has actually caused the enrichment/depletion of indium in the deposits? After studying the fluid inclusions in quartz crystallized at the main stage of mineralization of several In-rich and In-poor deposits in China, this paper analyzed the contents and studied the variation trend of In, Sn, Pb and Zn in the ore-forming fluids. The results show that the contents of lead and zinc in the ore-forming fluids of In-rich and -poor deposits are at the same level, and the lead contents range from 22×10^-6 to 81×10^-6 and zinc from 164×10^-6 to 309×10^-6, while the contents of indium and tin in the ore-forming fluids of In-rich deposits are far higher than those of Inpoor deposits, with a difference of 1-2 orders of magnitude. Indium and tin contents in ore-forming fluid of In-rich deposits are 1.9×10^-6-4.1×10^-6 and 7×10^-6-55×10^-6, and there is a very good positive correlation between the two elements, with a correlation coefficient of 0.9552. Indium and tin contents in ore-forming fluid of In-poor deposits are 0.03×10^-6-0.09×10^-6 and 0.4×10^-6-2.0×10^-6, respectively, and there is no apparent correlation between them. This indicates, on one hand, that In-rich oreforming fluids are the material basis for the formation of In-rich deposits, and, on the other hand, tin probably played a very important role in the transport and enrichment of indium.展开更多
文摘In this article,we comment on the paper by Kakinuma et al published recently.We focus specifically on the diagnosis of uterine pseudoaneurysm,but we also review other uterine vascular anomalies that may be the cause of life-threating hemorrhage and the different causes of uterine pseudoaneurysms.Uterine artery pseudoaneurysm is a complication of both surgical gynecological and nontraumatic procedures.Massive hemorrhage is the consequence of the rupture of the pseudoaneurysm.Uterine artery pseudoaneurysm can develop after obstetric or gynecological procedures,being the most frequent after cesarean or vaginal deliveries,curettage and even during pregnancy.However,there are several cases described unrelated to pregnancy,such as after conization,hysteroscopic surgery or laparoscopic myomectomy.Hemorrhage is the clinical manifestation and it can be life-threatening so suspicion of this vascular lesion is essential for early diagnosis and treatment.However,there are other uterine vascular anomalies that may be the cause of severe hemorrhage,which must be taken into account in the differential diagnosis.Computed tomography angiography and embolization is supposed to be the first therapeutic option in most of them.
文摘BACKGROUND 2D-echocardiography(2DE)has been the primary imaging modality in children with Kawasaki disease(KD)to assess coronary arteries.AIM To report the presence and implications of incidental congenital coronary artery anomalies that had been misinterpreted as coronary artery abnormalities(CAAs)on 2DE.METHODS Records of children diagnosed with KD,who underwent computed tomography coronary angiography(CTCA)at our center between 2013-2023 were reviewed.We identified 3 children with congenital coronary artery anomalies in this cohort on CTCA.Findings of CTCA and 2DE were compared in these 3 children.RESULTS Of the 241 patients with KD who underwent CTCA,3(1.24%)had congenital coronary artery anomalies on CTCA detected incidentally.In all 3 patients,baseline 2DE had identified CAAs.CTCA was then performed for detailed evaluation as per our unit protocol.One(11-year-boy)amongst the 3 patients had complete KD,while the other two(3.3-year-boy;4-month-girl)had incomplete KD.CTCA revealed separate origins of left anterior descending artery and left circumflex from left sinus[misinterpreted as dilated left main coronary artery(LCA)on 2DE],single coronary artery(interpreted as dilated LCA on 2DE)and dilated right coronary artery on 2DE in case of anomalous origin of LCA from the main pulmonary artery.The latter one was subsequently operated upon.CONCLUSION CTCA is essential for detailed assessment of coronary arteries in children with KD especially in cases where there is suspicion of congenital coronary artery anomalies.Relying solely on 2DE may not be sufficient in such cases,and findings from CTCA can significantly impact therapeutic decision-making.
基金supported by the Key Research Project of China Geological Survey(Grant No.DD20230564)the Research Project of Natural Resources Department of Gansu Province(Grant No.202219)。
文摘Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration.
基金supported by the National Natural Science Foundation of China(NFSCGrant No.42030410)+2 种基金Laoshan Laboratory(No.LSKJ202202402)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDB40000000)the Startup Foundation for Introducing Talent of NUIST.
文摘El Niño-Southern Oscillation(ENSO)is the strongest interannual climate mode influencing the coupled ocean-atmosphere system in the tropical Pacific,and numerous dynamical and statistical models have been developed to simulate and predict it.In some simplified coupled ocean-atmosphere models,the relationship between sea surface temperature(SST)anomalies and wind stress(τ)anomalies can be constructed by statistical methods,such as singular value decomposition(SVD).In recent years,the applications of artificial intelligence(AI)to climate modeling have shown promising prospects,and the integrations of AI-based models with dynamical models are active areas of research.This study constructs U-Net models for representing the relationship between SSTAs andτanomalies in the tropical Pacific;the UNet-derivedτmodel,denoted asτUNet,is then used to replace the original SVD-basedτmodel of an intermediate coupled model(ICM),forming a newly AI-integrated ICM,referred to as ICM-UNet.The simulation results obtained from ICM-UNet demonstrate their ability to represent the spatiotemporal variability of oceanic and atmospheric anomaly fields in the equatorial Pacific.In the ocean-only case study,theτUNet-derived wind stress anomaly fields are used to force the ocean component of the ICM,the results of which also indicate reasonable simulations of typical ENSO events.These results demonstrate the feasibility of integrating an AI-derived model with a physics-based dynamical model for ENSO modeling studies.Furthermore,the successful integration of the dynamical ocean models with the AI-based atmospheric wind model provides a novel approach to ocean-atmosphere interaction modeling studies.
基金the National Natural Science Foundation of China(grant numbers 42004051,42274214,41904134).
文摘Long-wavelength(>500 km)magnetic anomalies originating in the lithosphere were first found in satellite magnetic surveys.Compared to the striking magnetic anomalies around the world,the long-wavelength magnetic anomalies in China and surrounding regions are relatively weak.Specialized research on each of these anomalies has been quite inadequate;their geological origins remain unclear,in particular their connection to tectonic activity in the Chinese and surrounding regions.We focus on six magnetic high anomalies over the(1)Tarim Basin,(2)Sichuan Basin(3)Great Xing’an Range,(4)Barmer Basin,(5)Central Myanmar Basin,and(6)Sunda and Banda Arcs,and a striking magnetic low anomaly along the southern part of the Himalayan-Tibetan Plateau.We have analyzed their geological origins by reviewing related research and by detailed comparison with geological results.The tectonic backgrounds for these anomalies belong to two cases:either ancient basin basement,or subduction-collision zone.However,the geological origins of large-scale regional magnetic anomalies are always subject to dispute,mainly because of limited surface exposure of sources,later tectonic destruction,and superposition of multi-phase events.
基金The National Key R&D Program of China under contract Nos 2022YFC3003800,2020YFC1521700 and 2020YFC1521705the National Natural Science Foundation of China under contract No.41830540+3 种基金the Open Fund of the East China Coastal Field Scientific Observation and Research Station of the Ministry of Natural Resources under contract No.OR-SECCZ2022104the Deep Blue Project of Shanghai Jiao Tong University under contract No.SL2020ZD204the Special Funding Project for the Basic Scientific Research Operation Expenses of the Central Government-Level Research Institutes of Public Interest of China under contract No.SZ2102the Zhejiang Provincial Project under contract No.330000210130313013006。
文摘Understanding the topographic patterns of the seafloor is a very important part of understanding our planet.Although the science involved in bathymetric surveying has advanced much over the decades,less than 20%of the seafloor has been precisely modeled to date,and there is an urgent need to improve the accuracy and reduce the uncertainty of underwater survey data.In this study,we introduce a pretrained visual geometry group network(VGGNet)method based on deep learning.To apply this method,we input gravity anomaly data derived from ship measurements and satellite altimetry into the model and correct the latter,which has a larger spatial coverage,based on the former,which is considered the true value and is more accurate.After obtaining the corrected high-precision gravity model,it is inverted to the corresponding bathymetric model by applying the gravity-depth correlation.We choose four data pairs collected from different environments,i.e.,the Southern Ocean,Pacific Ocean,Atlantic Ocean and Caribbean Sea,to evaluate the topographic correction results of the model.The experiments show that the coefficient of determination(R~2)reaches 0.834 among the results of the four experimental groups,signifying a high correlation.The standard deviation and normalized root mean square error are also evaluated,and the accuracy of their performance improved by up to 24.2%compared with similar research done in recent years.The evaluation of the R^(2) values at different water depths shows that our model can achieve performance results above 0.90 at certain water depths and can also significantly improve results from mid-water depths when compared to previous research.Finally,the bathymetry corrected by our model is able to show an accuracy improvement level of more than 21%within 1%of the total water depths,which is sufficient to prove that the VGGNet-based method has the ability to perform a gravity-bathymetry correction and achieve outstanding results.
文摘BACKGROUND: Dental anomalies are variations from the established well-known general anatomy and morphology of the tooth as a result of disturbances during tooth formation. They can be developmental, congenital, or acquired and may be localized to a single tooth or involve systemic conditions. AIM: To evaluate the prevalence of dental anomalies in patients who report to the Komfo Anokye Teaching Hospital (KATH) dental clinics. METHOD: A descriptive cross-sectional design was used with a sample size of 92 patients aged 18 or older, obtained through convenience sampling. Data analysis was performed using SPSS version 26.0. RESULTS: The study included 92 patients aged 18 to 72 years, with 47.8% males and 52.2% females. Dental anomalies were observed in 51.1% of participants, with a higher prevalence in females (55.3%). The most common anomalies were diastema (48.3%), impacted teeth (22.0%), dilaceration (11.9%), and peg-shaped lateral teeth (6.8%). CONCLUSION: This study highlights the importance of conducting thorough dental examinations to identify and address dental anomalies, which may have implications for treatment. Early detection and correction of these anomalies are crucial to prevent future complications.
文摘Objective:Coronary artery anatomical variations and anomalies are an important topic due to their potential clinical manifestations.This study aims to investigate the prevalence of coronary artery anatomical variations and anomalies in symptomatic patients with coronary computed tomography angiography(CCTA).Methods:This is a retrospective study that included all symptomatic patients who had CCTA in a tertiary care hospital in Saudi Arabia during a period of seven years.Results:The total number of included patients was 507(60%males)with a mean age of 57.4 years.Approximately 41%had luminal stenoses,averaging 49.7%.The total num-ber of patients with coronary anatomical variations(CAV)and coronary artery anomalies(CAA)was 217(43%).CAV prevalence was 26%,which included 14%non-right coronary dominance,5%short left main coronary artery(LMCA),and 7%division variations(trifurcation and quadrifurcarion)of the LMCA.The prevalence of CAA was 29%,which included 5%origin anomalies,22%myocardial bridge,and 2%course anomalies.Conclusions:A high prevalence of coronary artery anatomic variations and anomalies in symptomatic patients is reported in this study.Systematic reviews,meta-analyses,reporting guidelines,and unified definitions and classifications of cor-onary variations and anomalies are lacking in the literature,presenting potential opportunities for future research and publications.
基金project was supported by the Enterprise Authorized Item from the Jilin Sanhe Mining Development Co., Ltd. (3-4-2021-120)the Fundamental Research Funds for the Central Universities (2-9-2020-010)。
文摘The Ziyoutun Cu-Au district is located in the Jizhong–Yanbian Metallogenic Belt and possesses excellent prospects. However, the thick regolith and complex tectonic settings present challenges in terms of detecting and decomposition of weak geochemical anomalies. To address this challenge, we initially conducted a comprehensive analysis of 1:10,000-scale soil geochemical data. This analysis included multivariate statistical techniques, such as correlation analysis, R-mode cluster analysis, Q–Q plots and factor analysis. Subsequently, we decomposed the geochemical anomalies, identifying weak anomalies using spectrum-area modeling and local singularity analysis. The results indicate that the assemblage of Au-Cu-Bi-As-Sb represents the mineralization at Ziyoutun. In comparison to conventional methods, spectrumarea modeling and local singularity analysis outperform in terms of identification of anomalies. Ultimately, we considered four specific target areas(AP01, AP02, AP03 and AP04) for future exploration, based on geochemical anomalies and favorable geological factors. Within AP01 and AP02, the geochemical anomalies suggest potential mineralization at depth, whereas in AP03 and AP04 the surface anomalies require additional geological investigation. Consequently, we recommend conducting drilling, following more extensive surface fieldwork, at the first two targets and verifying surface anomalies in the last two targets. We anticipate these findings will significantly enhance future exploration in Ziyoutun.
基金supported by the Guangdong Major Project of Basic and Applied Basic Research[grant number 2020B0301030004]the National Natural Science Foundation of China[grant number 91937302].
文摘Apart from listening to the cry of a healthy newborn,it is the declaration by the attending paediatrician in the labour room that the child is normal which brings utmost joy to parents.The global incidence of children born with congenital anomalies has been reported to be 3%-6%with more than 90%of these occurring in low-and middle-income group countries.The exact percentages/total numbers of children requiring surgical treatment cannot be estimated for several reasons.These children are operated under several surgical disciplines,viz,paediatric-,plastic reconstructive,neuro-,cardiothoracic-,orthopaedic surgery etc.These conditions may be life-threatening,e.g.,trachea-oesophageal fistula,critical pulmonary stenosis,etc.and require immediate surgical intervention.Some,e.g.,hydrocephalus,may need intervention as soon as the patient is fit for surgery.Some,e.g.,patent ductus arteriosus need‘wait and watch’policy up to a certain age in the hope of spontaneous recovery.Another extremely important category is that of patients where the operative intervention is done based on their age.Almost all the congenital anomalies coming under care of a plastic surgeon are operated as elective surgery(many as multiple stages of correction)at appropriate ages.There are advantages and disadvantages of intervention at different ages.In this article,we present a review of optimal timings,along with reasoning,for surgery of many of the common congenital anomalies which are treated by plastic surgeons.Obstetricians,paediatricians and general practitioners/family physicians,who most often are the first ones to come across such children,must know to guide the parents appropriately and convincingly impress upon the them as to why their child should not be operated immediately and also the consequences of too soon or too late.
基金National Natural Science Foundation of China(41975073,42274215)Wuxi University Research Start-up Fund for Introduced Talents (2023r037)+1 种基金Qinglan Project of Jiangsu Province for DING Liu-guan"333"Project of Jiangsu Province for DING Liu-guan
文摘The Northeastern China cold vortex(NCCV)is one type of strong cyclonic vortex that occurs near Northeastern China(NEC),and NCCV activities are typically accompanied by a series of hazardous weather.This paper employed an automatic algorithm to identify the NCCVs from 1979 to 2018 and analyzed their circulation patterns and climatic impacts by using the defined NCCV intensity index(NCCVI).The analysis revealed that the NCCV activities in summer exhibited a strong inter-annual variability,with an obvious periodicity of 3-4 years and 6-7 years,but without significant trends.In years when the NCCVI was high,NEC experienced negative geopotential height anomalies,cyclonic circulation,and cooler temperature anomalies,which were conducive to the maintenance and development of NCCV activities.Furthermore,large amounts of water vapor converged in NEC through two transportation routes as the NCCVs intensified,leading to a significant positive(negative)correlation with the summer precipitation(surface temperature)in NEC.The Atlantic sea surface temperature(SST)anomalies were closely related to summer NCCV activities.As the Atlantic SST rose,large amounts of surface sensible and latent heat flux were transported into the lower troposphere,inducing a positive geopotential height anomaly that occurred on the east side of the heat source.As a result,an eastward diverging flow was formed in the upper troposphere and propagated downstream,i.e.,the eastward propagating Rossby wave train,which eventually led to a coupled circulation in the Ural Mountains and NEC,as well as more intensive NCCV activities in summer.
文摘Understanding the relationship between rainfall anomalies and large-scale systems is critical for driving adaptation and mitigation strategies in socioeconomic sectors. This study therefore aims primarily to investigate the correlation between rainfall anomalies in Rwanda during the months of September to December (SOND) with the occurrences of Indian Ocean Dipole (IOD) and El Nino Southern Oscillation (ENSO) events. The study is useful for early warning and forecasting of negative effects associated with extreme rainfall anomalies across the country, using Climate Hazards Group InfraRed Precipitation with Station (CHIRPS), the National Centers for Environmental Prediction (NCEP) National Center for Atmospheric Research (NCAR) reanalysis sea surface temperature and ERA5 reanalysis datasets, during the period of 1983-2021. Both empirical orthogonal function (EOF), correlation analysis and composite analysis were used to delineate variability, relationship and the related atmospheric circulation between Rwanda seasonal rainfall September to December (SOND) with Indian Ocean Dipole (IOD) and El-Nino Southern Oscillation (ENSO). The results for Empirical Orthogonal Function (EOF) for the reconstructed rainfall data set showed three modes. EOF-1, EOF-2 and EOF-3 with their total variance of 63.6%, 16.5% and 4.8%, Indian ocean dipole (IOD) events resulted to a strong positive correlation of rainfall anomalies and Dipole model index (DMI) (r = 0.42, p value = 0.001, DF = 37) significant at 95% confidence level. The composite analysis for the reanalysis dataset was carried out to show the circulation patterns during four different events correlated with September to December seasonal rainfall in Rwanda using T-test at 95% confidence level. Wind anomaly revealed that there was a convergence of south westerly winds and easterly wind over the study area during positive Indian Ocean Diploe (PIOD) and PIOD with El Nino concurrence event years. The finding of this study will contribute to the enhancement of SOND seasonal rainfall forecasting and the reduction of vulnerability during IOD (ENSO) event years.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFC1509202)the National Natural Science Foundation of China(Grant Nos.41772350,61371189,and 41701513).
文摘The occurrence of earthquakes is closely related to the crustal geotectonic movement and the migration of mass,which consequently cause changes in gravity.The Gravity Recovery And Climate Experiment(GRACE)satellite data can be used to detect gravity changes associated with large earthquakes.However,previous GRACE satellite-based seismic gravity-change studies have focused more on coseismic gravity changes than on preseismic gravity changes.Moreover,the noise of the north–south stripe in GRACE data is difficult to eliminate,thereby resulting in the loss of some gravity information related to tectonic activities.To explore the preseismic gravity anomalies in a more refined way,we first propose a method of characterizing gravity variation based on the maximum shear strain of gravity,inspired by the concept of crustal strain.The offset index method is then adopted to describe the gravity anomalies,and the spatial and temporal characteristics of gravity anomalies before earthquakes are analyzed at the scales of the fault zone and plate,respectively.In this work,experiments are carried out on the Tibetan Plateau and its surrounding areas,and the following findings are obtained:First,from the observation scale of the fault zone,we detect the occurrence of large-area gravity anomalies near the epicenter,oftentimes about half a year before an earthquake,and these anomalies were distributed along the fault zone.Second,from the observation scale of the plate,we find that when an earthquake occurred on the Tibetan Plateau,a large number of gravity anomalies also occurred at the boundary of the Tibetan Plateau and the Indian Plate.Moreover,the aforementioned experiments confirm that the proposed method can successfully capture the preseismic gravity anomalies of large earthquakes with a magnitude of less than 8,which suggests a new idea for the application of gravity satellite data to earthquake research.
基金supported by the Special Investigation and Assessment of Geological Mineral Resources of the China Geological Survey(No.GZH003-07-03)
文摘Magnetic anomalies are often disturbed by the magnetization direction, so we can't directly use the original magnetic anomaly to estimate the exact location and geometry of the source. The 2D analytic signal is insensitive to magnetization direction. In this paper, we present an automatic method based on the analytic signal horizontal and vertical derivatives to interpret the magnetic anomaly. We derive a linear equation using the analytic signal properties and we obtain the 2D magnetic body location parameters without giving a priori information. Then we compute the source structural index (expressing the geometry) by the estimated location parameters. The proposed method is demonstrated on synthetic magnetic anomalies with noise. For different models, the proposed technique can both successfully estimate the location parameters and the structural index of the sources and is insensitive to noise. Lastly, we apply it to real magnetic anomalies from China and obtain the distribution of unexploited iron ore. The inversion results are consistent with the parameters of known ore bodies.
基金supported by the Scientific Research Starting Foundation of HoHai University, China (No. 2084/40801136)the Fundamental Research Funds for the Central Universities (No.2009B12514).
文摘In order to enhance geological body boundary visual effects in images and improve interpretation accuracy using gravity and magnetic field data, we propose an improved small sub-domain filtering method to enhance gravity anomalies and gravity gradient tensors. We discuss the effect of Gaussian white noise on the improved small sub-domain filtering method, as well as analyze the effect of window size on geological body edge recognition at different extension directions. Model experiments show that the improved small sub-domain filtering method is less affected by noise, filter window size, and geological body edge direction so it can more accurately depict geological body edges than the conventional small sub-domain filtering method. It also shows that deeply buried body edges can be well delineated through increasing the filter window size. In application, the enhanced gravity anomalies and calculated gravity gradient tensors of the Hulin basin show that the improved small sub-domain filtering can recognize more horizontal fault locations than the conventional method.
基金supported by the China Postdoctoral Science Foundation (No.2014M551188)the Deep Exploration in China Sinoprobe-09-01 (No.201011078)
文摘Edge detection is an image processing technique for finding the boundaries of objects within images. It is typically used to interpret gravity and magnetic data, and find the horizontal boundaries of geological bodies. Large deviations between model and true edges are common because of the interference of depth and errors in computing the derivatives; thus, edge detection methods cannot provide information about the depth of the source. To simultaneously obtain the horizontal extent and depth of geophysical anomalies, we use normalized edge detection filters, which normalize the edge detection function at different depths, and the maxima that correspond to the location of the source. The errors between model and actual edges are minimized as the depth of the source decreases and the normalized edge detection method recognizes the extent of the source based on the maxima, allowing for reliable model results. We demonstrate the applicability of the normalized edge detection filters in defining the horizontal extent and depth using synthetic and actual aeromagnetic data.
文摘The observed data of the sea surface temperature (SST) anomalies and the sea temperature (ST) in the sub-layer of the equatorial Pacific, the NCEP/ NCAR reanalysis data and the data set of daily precipitation in China are used to analyze the characteristics of the 1997 / 98 ENSO cycle and its impact on summer climate anomalies in East Asia. The results show that the 1997/98 ENSO cycle, the strongest one in the 20th century, might be characterized by rapid development and decay and eastward propagation from the West Pacific warm pool. Influenced by the ENSO cycle, in 1997, the serious drought and hot summer occurred in North China, and in the summer of 1998, the severe floods occurred in the Yangtze River valley, especially in the Dongting Lake and Boyang Lake valleys, South Korea and Japan. The analysis also shows that: influenced by the 1997/98 ENSO cycle, the water vapor transportation by the Asian monsoon in the summer of 1997 was very different from that in the summer of 1998. In the summer of 1997, the water vapor transportation by the Asian summer monsoon was weak in North China and the northern part of the Korea Peninsula. Thus, it caused the drought and hot summer in North China. However, in the summer of 1998, the sea temperature in the sub-layer of the West Pacific warm pool dropped, the western Pacific subtropical high shifted southward. Thus, a large amount of water vapor was transported from the Bay of Bengal, the South China Sea and the tropical western Pacific into the Yangtze River valley of China, South Korea and Japan, and the severe flood occurred there. Key words ENSO cycle - Climate anomaly - Monsoon - Drought and flood This study was supported by the National Key Programme for Developing Basic Sciences under Grant No. G1998040900(I).
文摘Using the data of 500 hPa geopotential height from 1951 to 1995, SST roughly in the same period and OLR data from 1974 to 1994, the relation between the anomalies of subtropical high (STH for short) and the tropical circulations including the Asian monsoon as well as the convective activity are studied. In order to study the physical process of the air-sea interaction related to STH anomaly, the correlation of STH with SST at various sea areas, lagged and simultaneous, has been calculated. Comparing the difference of OLR, wind fields, vertical circulations and SST anomalies in the strong and weak STH, we investigate the characteristics of global circulations and the SST distributions related to the anomalous STH at the western Pacific both in winter and summer. Much attention has been paid to the study of the air-sea interaction and the relationship between the East Asian monsoon and the STH in the western Pacific. A special vertical circulation, related to the STH anomalies is found, which connects the monsoon current to the west and the vertical flow influenced by the SST anomaly in the tropical eastern Pacific.
基金the Key 0rientation Research Project of the Chinese Academy of Sciences (KZCX2-YW- 111);the National Natural Science Foundation of China (Grant Nos. 40172037 and 40072036) for its financial support.
文摘All the indium-rich deposits with indium contents in ores more than 100×10^-6 seems to be of cassiterite-sulfide deposits or Sn-bearing Pb-Zn deposits, e.g., in the Dachang Sn deposit in Guangxi, the Dulong Sn-Zn deposit in Yunnan, and the Meng'entaolegai Ag-Pb-Zn deposit in Inner Mongolia, the indium contents in ores range from 98×10^-6 to 236×10^-6 and show a good positive correlation with contents of zinc and tin, and their correlation coefficients are 0.8781 and 0.7430, respectively. The indium contents from such Sn-poor deposits as the Fozichong Pb-Zn deposit in Guangxi and the Huanren Pb-Zn deposit in Liaoning are generally lower than 10×10^-6, i.e., whether tin is present or not in a deposit implies the enrichment extent of indium in ores. Whether the In enrichment itself in the ore -forming fluids or the ore-forming conditions has actually caused the enrichment/depletion of indium in the deposits? After studying the fluid inclusions in quartz crystallized at the main stage of mineralization of several In-rich and In-poor deposits in China, this paper analyzed the contents and studied the variation trend of In, Sn, Pb and Zn in the ore-forming fluids. The results show that the contents of lead and zinc in the ore-forming fluids of In-rich and -poor deposits are at the same level, and the lead contents range from 22×10^-6 to 81×10^-6 and zinc from 164×10^-6 to 309×10^-6, while the contents of indium and tin in the ore-forming fluids of In-rich deposits are far higher than those of Inpoor deposits, with a difference of 1-2 orders of magnitude. Indium and tin contents in ore-forming fluid of In-rich deposits are 1.9×10^-6-4.1×10^-6 and 7×10^-6-55×10^-6, and there is a very good positive correlation between the two elements, with a correlation coefficient of 0.9552. Indium and tin contents in ore-forming fluid of In-poor deposits are 0.03×10^-6-0.09×10^-6 and 0.4×10^-6-2.0×10^-6, respectively, and there is no apparent correlation between them. This indicates, on one hand, that In-rich oreforming fluids are the material basis for the formation of In-rich deposits, and, on the other hand, tin probably played a very important role in the transport and enrichment of indium.