期刊文献+
共找到241,740篇文章
< 1 2 250 >
每页显示 20 50 100
Three-dimensional Modeling of Ore-forming Elements and Mineralization Prognosis for the Yechangping Mo Deposit,Henan Province,China 被引量:1
1
作者 DING Gaoming JI Genyuan +5 位作者 YAN Guolong XU Yongzhong WANG Kunming XIAO Chun WANG Quanle GUO Dongbao 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2024年第3期736-752,共17页
Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-di... Three-dimensional geochemical modeling of ore-forming elements is crucial for predicting deep mineralization.This approach provides key information for the quantitative prediction of deep mineral localization,three-dimensional fine interpolation,analysis of spatial distribution patterns,and extraction of quantitative mineral-seeking markers.The Yechangping molybdenum(Mo)deposit is a significant and extensive porphyry-skarn deposit in the East Qinling-Dabie Mo polymetallic metallogenic belt at the southern margin of the North China Block.Abundant borehole data on oreforming elements underpin deep geochemical predictions.The methodology includes the following steps:(1)Threedimensional geological modeling of the deposit was established.(2)Correlation,cluster,and factor analyses post delineation of mineralization stages and determination of mineral generation sequence to identify(Cu,Pb,Zn,Ag)and(Mo,W,mfe)assemblages.(3)A three-dimensional geochemical block model was constructed for Mo,W,mfe,Cu,Zn,Pb,and Ag using the ordinary kriging method,and the variational function was developed.(4)Spatial distribution and enrichment characteristics analysis of ore-forming elements are performed to extract geological information,employing the variogram and w(Cu+Pb+Zn+Ag)/w(Mo+W)as predictive indicators.(5)Identifying the western,northwestern,and southwestern areas of the mine with limited mineralization potential,contrasted by the northeastern and southeastern areas favorable for mineral exploration. 展开更多
关键词 3D geochemical model ore-forming elements GEOSTATISTICS deep mineralization prediction Yechangping Mo deposit
下载PDF
Upper Mantle Heterogeneity in Ore-Forming Elements and Its Bearing on Metallogenesis in Qinling Belt and East China
2
作者 Han Yinwen Zheng Haifei Ouyang Jianping Zhang BenrenChina University of Geosciences , Wuhan 430074 《Journal of Earth Science》 SCIE CAS CSCD 1992年第1期34-42,共9页
This paper presents the results of our recent studies on the upper mantle composition in the Qinling Belt and East China . It discusses the methods of estimating the upper mantle composition, its selected elements and... This paper presents the results of our recent studies on the upper mantle composition in the Qinling Belt and East China . It discusses the methods of estimating the upper mantle composition, its selected elements and its constitution characteristics .The results indicate that ore-forming elements on ore types and their distribution in this area are strongly controlled by the upper mantle heterogeneity . 展开更多
关键词 regional upper mantle partial melting ore-forming elements chemical heterogeneity regional ore distribution .
下载PDF
The effect of Fe-Mn minerals and seawater interface and enrich-ment mechanism of ore-forming elements of polymetallic crusts and nodules from the South China Sea 被引量:4
3
作者 GUAN Yao SUN Xiaoming +7 位作者 IANG Xiaodong SA Rina ZHOU Li HUANG Yi LIU Yating LI Xiaojie LU Rongfei WANG Chi 《Acta Oceanologica Sinica》 SCIE CAS CSCD 2017年第6期34-46,共13页
Ferromanganese crusts and nodules are important submarine mineral resources that contain various metal elements with significant economic value. In this study, polymetallic crusts and nodules obtained from the South C... Ferromanganese crusts and nodules are important submarine mineral resources that contain various metal elements with significant economic value. In this study, polymetallic crusts and nodules obtained from the South China Sea (SCS) were determined by using X-ray power diffraction (XRD), Raman spectroscopy (RS), Fourier transform infrared spectroscopy (FTIR), and X-ray photoelectron spectroscopy (XPS) to systematically investigate and analyze the mineralogical and spectral characteristics of the Fe-Mn minerals. XRD measurements revealed that the SCS polymetallic crusts and nodules were composed of vernadite, quartz, and plagioclase. The nodules also contained todorokite. The Fe-phase minerals of the SCS crusts and nodules were composed of amorphous Fe oxide/hydroxide, and the Mn- and Fe-phases minerals exhibited relatively poor degrees of crystallization. FTIR results showed that the Fe-Mn minerals in the crusts and nodules included a large number of surface hydroxyl groups. These surface hydroxyl groups contained protons that could provide reactive sites for complexation of ore-forming elements in seawater. XPS results indicated that the surfaces of the Fe-Mn minerals mainly contained Fe, Mn, and O. Fe was present in the trivalent oxidation state, while Mn, which may contain several bivalent oxidation state, was present in the tetravalent and trivalent oxidation states. The SCS polymetallic crusts and nodules were compared with Pacific seamount crusts, and results showed that the surface hydroxyl (-OH) groups of the SCS crusts and nodules numbered more than the lattice oxygen (O^2-). But the lattice oxygen of Pacific seamount crusts numbered more than the surface hydroxyl groups. This characteristic indicated that the degree of crystallization of Fe-Mn minerals from the Pacific Ocean was higher than that of minerals from the South China Sea. Comprehensive studies showed that ore-forming elements in the interface between seawater and the Fe-Mn minerals in the submarine ferromanganese crusts and nodules employed the following enrichment mechanisms: (1) the metal ion complexed with the surface hydroxyl of Fe-Mn minerals to form hydroxyl complexes, which were connected by coordination bonds or stable inner-sphere complexes that exchanged protons on the mineral surfaces; (2) the charged surfaces of the minerals and metal cations formed outer-sphere complexes, which made up the electrostatic double layer, through electrostatic adsorption; and (3) the metal cations isomorphously exchanged the Mn and Fe ions of the mineral lattice structure. 展开更多
关键词 polymetallic crust and nodule mineralogy characteristic interface effect element enrichment surfacecomplexation
下载PDF
Ore-forming elements diffusion and distribution in the altered host rock surrounding the Koktokay No.3 pegmatite in the Chinese Altay 被引量:4
4
作者 Jingyu Zhao Hui Zhang +2 位作者 Yong Tang Zhenghang Lü Yang Chen 《Acta Geochimica》 EI CAS CSCD 2017年第2期151-165,共15页
Petrography and geochemistry of the altered and unaltered host rocks surrounding the Koktokay No.3 pegmatite revealed that the unaltered amphibolite is mainly composed of hornblende, plagioclase, and ilmenite.Beyond t... Petrography and geochemistry of the altered and unaltered host rocks surrounding the Koktokay No.3 pegmatite revealed that the unaltered amphibolite is mainly composed of hornblende, plagioclase, and ilmenite.Beyond these primary components, the altered host rocks contain a few newly formed minerals, including biotite,tourmaline, chlorine, and muscovite. The alteration zone surrounding the Koktokay No.3 pegmatite is limited to 2.0 m, characterized by biotitization, tourmalization, and chloritization. In the altered host rocks, the contents of SiO2, MgO, MnO, Na2O, and TiO2 did not vary greatly.However, Al2O3 showed a weak decreasing trend with the increasing distance from the pegmatite contact zone, while Fe2O3 and CaO showed an increasing trend. The contents of Li, Rb, and Cs in the altered host rocks were much higher than those in the unaltered host rocks, decreasing with distance from the contact. The chondrite-normalized rare earth element(REE) pattern of the altered and unaltered host rock was right-inclined from La to Lu, but enriched in light REEs over heavy REEs after hydrothermal alteration. An isocon plot shows that some oxides migrated in with an order of P2O5〉K2O 〉TiO2〉Al2O3〉SiO2〉MnO≥MgO, while others migrated out with an order of Na2O 〉CaO 〉Fe2O3. For REEs, the migration ratios are positive values withCs 〉Rb 〉Li 〉Nb 〉Ta 〉Be, signifying that all REEs migrated from the exsolved magmatic fluid into the altered host rocks. It was concluded that diffusion was the only mechanism for migration of ore-forming elements in the alteration zone. The effective diffusion coefficients(Deff)of LiF, RbF, and CsF were estimated under a fluid temperature of 500–550℃. Using a function of concentration(C(x,t)) and distance(x), the order of migration distance was determined to be LiF 〉CsF 〉RbF, with diffusion times of (3.39 ± 0.35)× 10^6,(3.19 ± 0.28) × 10^5 and(6.33 ± 0.05) × 10^5 years, respectively. 展开更多
关键词 Rare elements DIFFUSION ALTERATION Koktokay No. 3 pegmatite ALTAY
下载PDF
Ore-forming mechanism of Huxu Au-dominated polymetallic deposit in the Dongxiang Basin,South China:Constraints from in-situ trace elements and S-Pb isotopes of pyrite
5
作者 Hongze Gao Jiajie Chen +3 位作者 Chengbiao Leng Yuhui Hu Huidan Xie Zenghua Li 《Acta Geochimica》 EI CAS CSCD 2024年第6期1223-1240,共18页
The Huxu Au-dominated polymetallic deposit is a hydrothermal deposit located in the Dongxiang volcanic basin in the middle section of the Gan-Hang tectonic belt in South China.The orebodies primarily occur within the ... The Huxu Au-dominated polymetallic deposit is a hydrothermal deposit located in the Dongxiang volcanic basin in the middle section of the Gan-Hang tectonic belt in South China.The orebodies primarily occur within the Jurassic-Cretaceous quartz diorite porphyry,while the genesis of this deposit is unclear.This study focused on geological and mineralogical characteristics,in-situ trace elements and S-Pb isotopes of three generations of pyrite of the Huxu deposit to clarify the distribution of trace elements in pyrite,ore-forming fluid and material sources,and genetic types of the deposit.The mineralization stage of the deposit can be divided into quartz-pyrite stage(S1),quartz-pyrite-hematite stage(S2),quartz-polymetallic sulfide stage(S3)and quartz-hematite stage(S4),with the corresponding pyrite being divided into three generations(Py1-Py3).in-situ trace element data of pyrite show that Au in pyrite mainly exists in the form of solid solution(Au^(+)),and the content is relatively low at all stages(0.18 ppm for Py1,0.32 ppm for Py2,0.68 ppm for Py3),while Pb and Zn mainly exist as sulfide inclusions in the pyrite.S-Pb isotopes show that the sulfur and ore-forming material of this deposit are mainly sourced from magma.The mineral association,mineral textures and trace elements in different stages of pyrite indicate that fluid boiling and fluid mixing are the key factors of native gold precipitation in S2 and S4,respectively,while water-rock interaction controlled the precipitation of Pb-Zn sulfides.These integrating with geological characteristics suggests that the deposit should be an intermediate sulfidation epithermal deposit. 展开更多
关键词 Au-dominated Polymetallic deposit Intermediate sulfidation Epithermal deposit PYRITE Trace element S-Pb isotope Tectonic belt
下载PDF
Rare Earth Elements Geochemistry of Laowan Gold Deposit in Henan Province: Trace to Source of Ore-Forming Materials 被引量:12
6
作者 谢巧勤 徐晓春 +2 位作者 李晓萱 陈天虎 陆三明 《Journal of Rare Earths》 SCIE EI CAS CSCD 2006年第1期115-120,共6页
The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (IC... The compositions of REE in quartz and pyrite from the main stage of the Laowan gold deposit in Henan Province and that in quartz from Laowan granite were determined by inductively coupled plasma-mass-spectrometry (ICP-MS) to trace the source of ore-forming materials. Meanwhile, the REE compositions of the deposit ore, granite and metamorphic wall rock were also considered for comparative studies in detail. The range of ∑REE of quartz and pyrite from the deposit ores is 4.18 × 10^-6- 30.91 × 10^-6, the average of ∑REE is 13.39 × 10^-6, and the average of ∑REE of quartz in the Laowan granite is 6.68 × 10^-6. There is no distinct difference of REE parameters between the deposit ore quartz and granite quartz. The quartz in gold deposit has the same REE particular parameters as quartzes from Laowan granite, such as δEu, δCe, (La/Yb)N and (La/Sm)N, partition degree of LREE to HREE, especially, the chondrite-normalized REE patterns, but no similarity to those from metamorphic wall rock, which shows that ore-forming hydrothermal fluid is mainly the fluid coming from the Laowan granite magma, rather than metamorphic fluid. Meanwhile, comparison studies on REE features between minerals from the deposit ores and related geological bodies in the deposit show that REE characteristics of minerals can serve as an indicator of ore-forming fluid properties and sources, while the REE characteristics of the bulk samples (such as deposit ores, granites and wall rocks) can not trace the source of the ore-forming materials exactly. 展开更多
关键词 Laowan gold deposit REE geochemistry source of the ore-forming material ore-forming fluid rare earths
下载PDF
Rare Earth Element Geochemistry Characteristics of Laowan Gold Deposit in Henan Province: Trace to Source of Ore-Forming Materials
7
作者 Xie Qiaoqin Xu Xiaochun +2 位作者 Li Xiaoxuan Chen Tianhu Lu Sanming 《Journal of Rare Earths》 SCIE EI CAS CSCD 2005年第5期646-646,共1页
The compositions of REE in quartz and pyrite from main mineralized stage of the Laowan gold deposit in Henan province and that of quartz from Laowan granite were determined by Inductively Coupled Plasma-Mass-Spectrome... The compositions of REE in quartz and pyrite from main mineralized stage of the Laowan gold deposit in Henan province and that of quartz from Laowan granite were determined by Inductively Coupled Plasma-Mass-Spectrometry (ICP-MS). The REE of deposit ore of the Laowan gold deposit, wall-rock and Laowan granite also were studied to trace the source of metallogenic materials in Laowan gold deposit in detail. The range of ∑ REE in quartz and pyrite from gold deposit is 4.18 × 10^-6 - 30.91 × 10^-6, average of 13.39 × 10^-6, 6.68 × 10^-6 of the Laowan granite quartz, obviously lower to REE concentration of deposit, granite and wall-rock. The value of (La/ Yb)N and (La/Sm)N of ore minerals from the gold deposit is 13.23 and 4.17 respectively. The differences in REE parameters, such as δEu, δCe and diffusion degree in REE from light to heavy, among deposit ore minerals and granite mineral are weak. Especially, there are no differences between the chondrite-normalised REE curves of minerals from gold deposit and those of quartzs in Laowan granite, no similarity to wall-rock', which shows that ore-forming hydrothermal fluid mainly came from magma fluid resulting from the Laowan granite magma, metamorphic fluid in few. The results also show that REE characteristics of ore minerals in deposit are effective for disclosing oreforming fluid quality comparing with deposit ore'REE compositions. 展开更多
关键词 laowan gold deposit REE geochemisity source of ore-forming material ore-forming fluid
下载PDF
Toward understanding the role of genomic repeat elements in neurodegenerative diseases
8
作者 Zhengyu An Aidi Jiang Jingqi Chen 《Neural Regeneration Research》 SCIE CAS 2025年第3期646-659,共14页
Neurodegenerative diseases cause great medical and economic burdens for both patients and society;however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage se... Neurodegenerative diseases cause great medical and economic burdens for both patients and society;however, the complex molecular mechanisms thereof are not yet well understood. With the development of high-coverage sequencing technology, researchers have started to notice that genomic repeat regions, previously neglected in search of disease culprits, are active contributors to multiple neurodegenerative diseases. In this review, we describe the association between repeat element variants and multiple degenerative diseases through genome-wide association studies and targeted sequencing. We discuss the identification of disease-relevant repeat element variants, further powered by the advancement of long-read sequencing technologies and their related tools, and summarize recent findings in the molecular mechanisms of repeat element variants in brain degeneration, such as those causing transcriptional silencing or RNA-mediated gain of toxic function. Furthermore, we describe how in silico predictions using innovative computational models, such as deep learning language models, could enhance and accelerate our understanding of the functional impact of repeat element variants. Finally, we discuss future directions to advance current findings for a better understanding of neurodegenerative diseases and the clinical applications of genomic repeat elements. 展开更多
关键词 Alzheimer's disease ATAXIA deep learning long-read sequencing NEURODEGENERATION neurodegenerative diseases Parkinson's disease repeat element structural variant
下载PDF
Trace element and sulfur isotope compositions of pyrite from the Tianqiao Zn–Pb–Ag deposit in Guizhou province,SW China:implication for the origin of ore-forming fluids
9
作者 Yumiao Meng Xiaowen Huang +1 位作者 Chunxia Xu Songning Meng 《Acta Geochimica》 EI CAS CSCD 2022年第2期226-243,共18页
The Tianqiao Zn–Pb–Ag deposit in SW China,hosted by Devonian and Carboniferous limestone and clay rocks,is composed of sulfides such as sphalerite,galena,and pyrite.Pyrite is present in different paragenetic stages ... The Tianqiao Zn–Pb–Ag deposit in SW China,hosted by Devonian and Carboniferous limestone and clay rocks,is composed of sulfides such as sphalerite,galena,and pyrite.Pyrite is present in different paragenetic stages and can be divided into four types based on textures and mineral assemblages.Pyrite from the adjacent Shanshulin deposit(Py-SSL)is also used for comparison.Py1 shows framboid texture with grain diameter up to 1 mm and was commonly replaced by sphalerite.Py2 is characterized by overgrowth texture and displays inner oscillatory zoning.Py2 is associated with abundant sphalerite and galena.Py3 shows replacement relics textures where galena fills the fractures of pyrite.Py4 is a euhedral to subhedral crystal disseminated in dolomite and is characterized by deformation and fragmentation textures.Minor sphalerite and galena are associated with Py4.Py-SSL is subhedral and disseminated in dolomite,similar to Py4.Py1 was formed by a diagenetic or sedimentary process,whereas Py2 and Py3 were formed by multiple stages of ore fluids.Py4 and Py-SSL were formed at the carbonate-sulfide stage,but Py4 suffered from deformation after its formation.Py1,Py2,and Py3 are characterized by relative enrichment of Sb,Cu,and As,in contrast to Py4 and Py-SSL with higher Cr,W,Ge,Sn,Tl,Ni,and Ga contents.However,critical metals such as Ge,Ga,and In in pyrite are generally lower than10 ppm,which are not economically important.The trace element variation in Tianqiao pyrite with paragenesis results from fluid evolution in the Pb–Zn ore system and competition with co-precipitating minerals.Diagenetic and ore-forming hydrothermal fluids are responsible for the formation of different types of pyrite.Ore-related pyrite from the Tianqiao and Shanshulin deposits has Co and Ni distribution features similar to pyrite from sedimentary pyrite and submarine hydrothermal vents,different from those in volcanogenic massive sulfide,iron oxide-copper–gold,and porphyry Cu deposits,indicating their derivation of relatively low-temperature(<~250°C)hydrothermal fluids,similar to basin brines or seawater.,via fluid-rock interaction.This conclusion is also supported by the sulfur isotope composition of sulfides which are 13.0–13.5%,and 15.6–20.5%for Tianqiao and Shanshulin deposits,respectively. 展开更多
关键词 Trace elements PYRITE Sulfur isotopes Tianqiao and Shanshulin Zn-Pb-Ag Origin of oreforming fluids
下载PDF
In, Sn, Pb and Zn Contents and Their Relationships in Ore-forming Fluids from Some In-rich and In-poor Deposits in China 被引量:16
10
作者 ZHANG Qian ZHU Xiaoqing +1 位作者 HE Yuliang ZHU Zhaohui 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第3期450-462,共13页
All the indium-rich deposits with indium contents in ores more than 100×10^-6 seems to be of cassiterite-sulfide deposits or Sn-bearing Pb-Zn deposits, e.g., in the Dachang Sn deposit in Guangxi, the Dulong Sn-Zn... All the indium-rich deposits with indium contents in ores more than 100×10^-6 seems to be of cassiterite-sulfide deposits or Sn-bearing Pb-Zn deposits, e.g., in the Dachang Sn deposit in Guangxi, the Dulong Sn-Zn deposit in Yunnan, and the Meng'entaolegai Ag-Pb-Zn deposit in Inner Mongolia, the indium contents in ores range from 98×10^-6 to 236×10^-6 and show a good positive correlation with contents of zinc and tin, and their correlation coefficients are 0.8781 and 0.7430, respectively. The indium contents from such Sn-poor deposits as the Fozichong Pb-Zn deposit in Guangxi and the Huanren Pb-Zn deposit in Liaoning are generally lower than 10×10^-6, i.e., whether tin is present or not in a deposit implies the enrichment extent of indium in ores. Whether the In enrichment itself in the ore -forming fluids or the ore-forming conditions has actually caused the enrichment/depletion of indium in the deposits? After studying the fluid inclusions in quartz crystallized at the main stage of mineralization of several In-rich and In-poor deposits in China, this paper analyzed the contents and studied the variation trend of In, Sn, Pb and Zn in the ore-forming fluids. The results show that the contents of lead and zinc in the ore-forming fluids of In-rich and -poor deposits are at the same level, and the lead contents range from 22×10^-6 to 81×10^-6 and zinc from 164×10^-6 to 309×10^-6, while the contents of indium and tin in the ore-forming fluids of In-rich deposits are far higher than those of Inpoor deposits, with a difference of 1-2 orders of magnitude. Indium and tin contents in ore-forming fluid of In-rich deposits are 1.9×10^-6-4.1×10^-6 and 7×10^-6-55×10^-6, and there is a very good positive correlation between the two elements, with a correlation coefficient of 0.9552. Indium and tin contents in ore-forming fluid of In-poor deposits are 0.03×10^-6-0.09×10^-6 and 0.4×10^-6-2.0×10^-6, respectively, and there is no apparent correlation between them. This indicates, on one hand, that In-rich oreforming fluids are the material basis for the formation of In-rich deposits, and, on the other hand, tin probably played a very important role in the transport and enrichment of indium. 展开更多
关键词 In-rich deposit In-poor deposit ore-forming fluid fluid inclusion ore-forming elements
下载PDF
REE Geochemistry of Sulfides from the Huize Zn-Pb Ore Field, Yunnan Province: Implication for the Sources of Ore-forming Metals 被引量:15
11
作者 LI Wenbo HUANG Zhilong QI Liang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第3期442-449,共8页
REE abundances in sulfides from the Huize Zn-Pb ore field were determined with the ICPMS after preconcentration. The REE abundances in 26 sulfide samples (including pyrite, galena and sphalerite) are very low, with ... REE abundances in sulfides from the Huize Zn-Pb ore field were determined with the ICPMS after preconcentration. The REE abundances in 26 sulfide samples (including pyrite, galena and sphalerite) are very low, with the ~REE ranging from 1.6×10^-9 to 166.8×10^-9. Their LREE/HREE ratios range from 7.6 to 98, showing LREE enrichment relatively. The JEu values are below 1, indicating that they were deposited from an Eu-depleted and reducing fluid-system. Similar to the ore-hosting carbonate strata, calcite separates from carbonate veinlets filling in the fractures or faults crosscutting the carbonate strata also show clear Eu-depletion. This indicates that the carbonate veinlets and their parent fluid was possibly sourced from the strata and inherited the REE geochemical features of the strata. Therefore, REE-geochemical characteristics of both the sulfides and calcites, which were deposited from an ore-forming hydrothermal system, are similar to those of carbonate strata, and strongly suggest that the ore metals were mainly sourced from carbonate strata. 展开更多
关键词 Huize Zn-Pb ore field REE geochemistry SULFIDE fluid ore-forming metal
下载PDF
Numerical Modelling of Ore-forming Dynamics of Fractal Dispersive Fluid Systems 被引量:8
12
作者 邓军 方云 +3 位作者 杨立强 杨军臣 孙忠实 王建平 丁式江 王庆飞 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2001年第2期220-332,共13页
Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore forma... Based on an analysis of the fractal structures and mass transport mechanism of typical shear-fluid-ore formation system, the fractal dispersion theory of the fluid system was used in the dynamic study of the ore formation system. The model of point-source diffusive illuviation of the shear-fluid-ore formation system was constructed, and the numerical simulation of dynamics of the ore formation system was finished. The result shows that: (1) The metallogenic system have nested fractal structure. Different fractal dimension values in different systems show unbalance and inhomogeneity of ore-forming processes in the geohistory. It is an important parameter to symbolize the process of remobilization and accumulation of ore-forming materials. Also it can indicate the dynamics of the metallogenic system quantitatively to some extent. (2) In essence, the fractal dispersive ore-forming dynamics is a combination of multi-processes dominated by fluid dynamics and supplemented by molecule dispersion in fluids and fluid-rock interaction. It changes components and physico-chemical properties of primary rocks and fluids, favouring deposition and mineralization of ore-forming materials. (3) Gold ore-forming processes in different types of shear zones are quite different. (1) In a metallogenic system with inhomogeneous volumetric change and inhomogeneous shear, mineralization occurs in structural barriers in the centre of a shear zone and in geochemical barriers in the shear zone near its boundaries. But there is little possibility of mineralization out of the shear zone. (2) As to a metallogenic system with inhomogeneous volumetric change and simple shear, mineralization may occur only in structural barriers near the centre of the shear zone. (3) In a metallogenic system with homogeneous volumetric change and inhomogeneous shear, mineralization may occur in geochemical barriers both within and out of the shear zone. 展开更多
关键词 fluid system fractal dispersion point-source illuviation model ore-forming dynamics numerical simulation
下载PDF
Geochemical Characteristics and Sources of Ore-forming Fluids of the Mayuan Pb-Zn Deposit,Nanzheng,Shaanxi,China 被引量:5
13
作者 LIU Shuwen LI Ronxi +3 位作者 CHI Guoxiang ZENG Rong LIU Lingfang SHI Shun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第3期783-793,共11页
The Mayuan stratabound Pb-Zn deposit in Nanzheng,Shaanxi Province,is located in the northern margin of the Yangtze Plate,in the southern margin of the Beiba Arch.The orebodies are stratiform and hosted in breciated do... The Mayuan stratabound Pb-Zn deposit in Nanzheng,Shaanxi Province,is located in the northern margin of the Yangtze Plate,in the southern margin of the Beiba Arch.The orebodies are stratiform and hosted in breciated dolostone of the Sinian Dengying Formation.The ore minerals are primarily sphalerite and galena,and the gangue minerals comprise of dolomite,quartz,barite,calcite and solid bitumen.Fluid inclusions from ore-stage quartz and calcite have homogenization tempreatures from 98 to 337℃ and salinities from 7.7 wt%to 22.2 wt%(NaCl equiv.).The vapor phase of the inclusions is mainly composed of CH_4 with minor CO_2 and H_2S.The δD_(fluid) values of fluid inclusions in quartz and calcite display a range from-68‰ to-113‰(SMOW),and the δ^(18)O_(fluid)values calculated from δ^(18)O_(quartz) and δ^(18)O_(calcite) values range from 4.5‰ to 16.7‰(SMOW).These data suggest that the ore-forming fluids may have been derived from evaporitic sea water that had reacted with organic matter.The δ^(13)C_(CH4) values of CH_4 in fluid inclusions range from-37.2‰ to-21.0‰(PDB),suggesting that the CH_4 in the ore-forming fluids was mainly derived from organic matter.This,together with the abundance of solid bitumen in the ores,suggest that organic matter played an important role in mineralization,and that the thermochemical sulfate reduction(TSR) was the main mechanism of sulfide precipitation.The Mayuan Pb-Zn deposit is a carbonate-hosted epigenetic deposit that may be classified as a Mississippi Valley type(MVT) deposit. 展开更多
关键词 fluid inclusion ore-forming fluids organic matter Mayuan Pb-Zn deposit SHAANXI
下载PDF
REE Geochemistry of Fluorite from the Maoniuping REE Deposit,Sichuan Province,China:Implications for the Source of Ore-forming Fluids 被引量:3
14
作者 HUANG Zhilong XU Cheng +6 位作者 Andrew McCAIG LIU Congqiang WU Jing XU Deru LI Wenbo GUAN Tao XIAO Huayun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2007年第4期622-636,共15页
Fluorite is one of the main gangue minerals in the Maoniuping REE deposit, Sichuan Province, China. Fluorite with different colors occurs not only within various orebodies, but also in wallrocks of the orefield. Based... Fluorite is one of the main gangue minerals in the Maoniuping REE deposit, Sichuan Province, China. Fluorite with different colors occurs not only within various orebodies, but also in wallrocks of the orefield. Based on REE geochemistry, fluorite in the orefleld can be classified as the LREE-rich, LREE-flat and LREE-depleted types. The three types of fluorite formed at different stages from the same hydrothermal fluid source, with the LREE-rich fluorite forming at the relatively early stage, the LREE-flat fluorite in the middle, and the LREE-depleted fluorite at the latest stage. Various lines of evidence demonstrate that the variation of the REE contents of fluorite shows no relation to the color. The mineralization of the Maouiuping REE deposit is associated spatially and temporally with carbonatite-syenite magmatism and the ore-forming fluids are mainly derived from carbonatite and syenite melts. 展开更多
关键词 FLUORITE REE geochemistry ore-forming fluid Maoniuping REE deposit
下载PDF
Ore-forming Fluid Systems and Mineralization in the Eastern Jiangnan Uplift in the Border Area of Anhui and Jiangxi Provinces, China 被引量:3
15
作者 ZHOUTaofa YUANFeng +4 位作者 HOUMingjin FAnYu DUJianguo ZHUGuang YUEShucang 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第2期380-386,共7页
Obvious differences in mineralization characteristics exist between the southern and northern parts of the eastern part of the Jiangnan Uplift in northern Jiangxi Province and southern Anhui Province. The regional met... Obvious differences in mineralization characteristics exist between the southern and northern parts of the eastern part of the Jiangnan Uplift in northern Jiangxi Province and southern Anhui Province. The regional metallogeny is discussed, and the ore-forming fluid systems are classified in this article. It is proposed that the fluid ore-forming activities in the Jiangnan Uplift both in northern Jiangxi and southern Anhui have close relationships with the crust-mantle interaction and magmatic-tectonic activities. The types and scales of the mineralization on the both sides of the eastern Jiangnan Uplift were determined by fluid ore-forming systems and geological backgrounds. 展开更多
关键词 ore-forming fluid systems MINERALIZATION Jiangnan Uplift ANHUI northern Jiangxi
下载PDF
Characteristics of Pegmatite-Related Fluids and Significance to Ore-Forming Processes in the Zhaxikang Pb-Zn-Sb Polymetallic Deposit,Tibet,China 被引量:6
16
作者 XIE Yuling WANG Bogong +4 位作者 LI Yingxu LI Guangming DONG Suiliang GUO Xiang WANG Lei 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2015年第3期811-821,共11页
The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less... The Zhaxikang Pb-Zn-Sb polymetallic deposit is one of the most important deposits in the newly recognized southern Tibet antimony-gold metallogenic belt.Compared to the porphyry deposits in the Gangdese belt,much less researches have addressed these deposits,and the genesis of the Zhaxikang deposit is still controversial.Based on field investigation,petrographic,microthermometric,Laser Raman Microprobe(LRM) and SEM/EDS analyses of fluid,melt-fluid,melt and solid inclusions in quartz and beryl from pegmatite,this paper documents the characteristics and the evolution of primary magmatic fluid which was genetically related to greisenization,pegmatitization,and silification in the area.The results show that the primary magmatic fluids were derived from unmixing between melt and fluid and underwent a phase separation process soon after the exsolution.The primary magmatic fluids are of low salinity,high temperature,and can be approximated by the H_2O-NaCl-CO_2 system.The presence of Mn-Fe carbonate in melt-fluid inclusions and a Zn-bearing mineral(gahnite) trapped in beryl and in inclusions from pegmatite indicates high Mn,Fe,and Zn concentrations in the parent magma and magmatic fluids,and implies a genetic link between pegmatite and Pb-Zn-Sb mineralization.High B and F concentrations in the parent magma largely lower the solidus of the magma and lead to late fluid exsolution,thus the primary magmatic fluids related to pegmatite have much lower temperature than those in most porphyry systems.Boiling of the primary magmatic fluids leads to high-salinity and high-temperature fluids which have high capacity to transport Pb,Zn and Sb.The decrease in temperature and mixing with fluids from other sources may have caused the precipitation of Pb-Zn-Sn(Au) minerals in the distal fault systems surrounding the causative intrusion. 展开更多
关键词 Zhaxikang Pb-Zn-Sb deposit South Tibte Sb-Au metallogenic belt fluid inclusion pegmatite ore-forming process
下载PDF
Discriminating characters of ore-forming intrusions in the super-large Chalukou porphyry Mo deposit,NE China 被引量:3
17
作者 Peixin Duan Cui Liu +4 位作者 Xuanxue Mo Jinfu Deng Jinhua Qin Yu Zhang Shipan Tian 《Geoscience Frontiers》 SCIE CAS CSCD 2018年第5期1417-1431,共15页
The Chalukou porphyry Mo deposit, located in the Great Hinggan Range, is the largest Mo deposit in northeast China, although the age and genesis of the associated magmatic intrusions remain debated.Here we report zirc... The Chalukou porphyry Mo deposit, located in the Great Hinggan Range, is the largest Mo deposit in northeast China, although the age and genesis of the associated magmatic intrusions remain debated.Here we report zircon U-Pb ages and trace elements, whole rock geochemistry and Sre Nd isotope data with a view to understand the relationship between the magmatism and molybdenum mineralization.Zircon U-Pb analysis yield an age of 475 Ma for rhyolite in the older strata, 168 Ma for the premineralization monzogranite, and 154 Ma for the syn-mineralization granite porphyry. The granite porphyry and quartz porphyry are considered as the ore-forming intrusions. These rocks are peraluminous, alkali-calcic, and belong to high-K to shoshonitic series with a strong depletion of Eu. They also display characteristics of I-type granites. The rocks exhibit wide variations of(87 Sr/86 Sr)iin the range of 0.705426 -0.707363, and ε_(Nd)(t) of -3.7 to 0.93. Zircon REE distribution patterns show characteristics between crust and the mantle, implying magma genesis through crust-mantle interaction. The Fe_2O_3/FeO values(average 1) for the whole rock and EuN/Eu*Nvalues(average 0.45), Ce^(4+)/Ce^(3+) values(average 301)for zircon grains from the granite porphyry are higher than those from other lithologies. These features suggest that the ore-forming intrusions(syn-mineralization porphyry) had higher oxygen fugacity conditions than those of the pre-mineralization and post-mineralization rocks. The Chalukou Mo deposit formed in relation to the southward subduction of the Mongol-Okhotsk Ocean. Our study suggests that the subduction-related setting, crust-mantle interaction, and the large-scale magmatic intrusion were favorable factors to generate the super-large Mo deposits in this area. 展开更多
关键词 Greater Hinggan Range Chalukou PORPHYRY MO DEPOSIT Geochronology ore-forming INTRUSIONS Mongolia-Okhotsk ocean
下载PDF
Experimental Observation of the Ore-Forming Fluid NaCl-H_2O System in the Earth Interior 被引量:5
18
作者 ZHANG Ronghua and HU Shumin Open Research Laboratory of Geochemical Kinetics, Chinese Academy of Geological Sciences,26 Baiwanzhuang Road, Beijing 100037, China 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 1999年第1期47-64,共18页
The NaCl-H_2O binary system is a major component of solutions coexisting with ores. Observation ofsaturated solutions of NaCl-H_2O by using the method of hydrothermal diamond anvil cell (HDAC) is a new approach tothe ... The NaCl-H_2O binary system is a major component of solutions coexisting with ores. Observation ofsaturated solutions of NaCl-H_2O by using the method of hydrothermal diamond anvil cell (HDAC) is a new approach tothe study of ore-forming fluids. The salinities of NaCl-H_2O solutions in experimental observation are in a range of 32-55%. The observed temperature range is 25℃-850℃, and the pressure range 1 atm-10 kb. In this temperature-pressure range, the supercritical single phase, two phases (L,V) close to the critical state and two-phased (L+V) immis-cible region were observed. And for the salinity of 35% the two phase L+V immiscible region of NaCl-H_2O solutionwas observed in a range of 253-720℃. Another temperature range, 400-817℃, was observed for the immiscible two-phased region of 50% salinity solution. In the high-temperature part of the two-phased immiscible region, the phase na-ture is very unstable. A "critical phenomenon" was observed when the heating path was very close to the critical state.It is possible to observe a 'critical phenomenon': an "explosion" occurred almost constantly at the interface between theliquid and vapour and the interface is rather obscure. A continuous transition between phases L and V could be foundin the immiscible L+V phase while heating continuously. Moreover, as the NaCl-H_2O solution was separated into liq-uid and vapour phases, static charges surrounding each vapour bubble could be seen, and these bubbles were attractedtogether by the static charges to form a special solution structure. Besides, critical states of different salinities of NaCl-H_2O were observed in order to study the properties of the fluids occurring in the rocks in the earth interior, the origin ofore-bearing fluids and the significance of supercritical fluid with respect to the ore formation. The comparison of the sa-linity data of the fluid inclusions in the minerals of ore deposits with observations of NaCl-H_2O under HDAC in theconditions of high temperatures and pressures, combined with further thermodynamic analysis of ore-formation condi-tions would explain in depth the factors determining the ore formation. 展开更多
关键词 critical phenomenon solution structure of the two-phased immiscible region ore-forming hydrothermal solutions
下载PDF
Fluid Evolution and Ore-forming Processes of the Jiama Cu Deposit, Tibet: Evidence from Fluid Inclusions 被引量:2
19
作者 YAO Xiaofeng LIU Jiajun +2 位作者 TANG Juxing ZHENG Wenbao ZHANG Zhi 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2018年第1期127-143,共17页
The Jiama deposit is a large copper deposit in Tibet. Mineralization occurs in three different host rocks: skarn, hornfels and porphyry. A detailed fluid inclusion study was conducted for veins in the different host ... The Jiama deposit is a large copper deposit in Tibet. Mineralization occurs in three different host rocks: skarn, hornfels and porphyry. A detailed fluid inclusion study was conducted for veins in the different host rocks to investigate the relationship between fluid evolution and ore-forming processes. Based on examination of cores from 36 drill holes, three types of veins (A, B and D) were identified in the porphyries, four types (I, II, III and IV) in the skarn, and three (a, b and c) in the hornfels. The crosscutting relationships of the veins and that of the host rocks suggest two hydrothermal stages, one early and one late stage. Fluid inclusions indicate that the Jiama hydrothermal fluid system underwent at least two episodes of fluid boiling. The first boiling event occurred during the early hydrothermal stage, as recorded by fluid inclusions hosted in type A veins in the porphyries, type a veins in the hornfels, and wollastonite in the skarns. This fluid boiling event was associated with relatively weak mineralization. The second boiling event occurred in the late hydrothermal stage, as determined from fluid inclusions hosted in type B and D veins in the porphyries, type I to IV veins in the skarns, and type b and c veins in the hornfels. This late boiling event, together with mixing with meteoric water, was responsible for more than 90% of the metal accumulation in the deposit. The first boiling only occurred in the central part of the deposit and the second boiling event took place across an entire interlayered structural zone between hornfels and marble. A spatial zoning of ore-elements is evident, and appears to be related to different migration pathways and precipitation temperatures of Cu, Mo, Pb, Zn, Au and Ag. 展开更多
关键词 fluid inclusion fluid evolution ore-forming processes Jiama deposit TIBET
下载PDF
Ore-forming Conditions and Prospecting in the West Kunlun Area,Xinjiang, China 被引量:2
20
作者 DONGYongguan GUOKunyi +2 位作者 XIAOHuiliang ZHANGChuanlin ZHAOYu 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2004年第2期345-351,共7页
The West Kunlun ore-forming belt is located between the northwestern Qinghai-Tibet Plateau and southwestern Tarim Basin. It situated between the Paleo-Asian Tectonic Domain and Tethyan Tectonic Domain. It is an import... The West Kunlun ore-forming belt is located between the northwestern Qinghai-Tibet Plateau and southwestern Tarim Basin. It situated between the Paleo-Asian Tectonic Domain and Tethyan Tectonic Domain. It is an important component of the giant tectonic belt in central China (the Kunlun-Qilian-Qinling Tectonic Belt or the Central Orogenic Belt). Many known ore-forming belts such as the Kunlun-Qilian Qinling ore-forming zone, Sanjiang (or Three river) ore-forming zone, Central Asian ore-forming zone, etc. pass through the West Kunlun area. Three ore-forming zones and seven ore-forming subzones were classified, and eighteen mineralization areas were marked. It is indicated that the West Kunlun area is one of the most favorable region for finding out large and superlarge ore deposits. 展开更多
关键词 ore-forming conditions mineralization collecting area orogenic zone West Kunlun Mountains
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部