基于组件的卡通人脸生成分为构件的组合及特征调整两阶段完成,可分别视为组合优化和连续优化问题解决。然而,人脸特征参数优化过程中很难用函数显性表示其优化目标,是典型的隐性目标优化问题。针对此问题,提出基于反向学习策略的交互式...基于组件的卡通人脸生成分为构件的组合及特征调整两阶段完成,可分别视为组合优化和连续优化问题解决。然而,人脸特征参数优化过程中很难用函数显性表示其优化目标,是典型的隐性目标优化问题。针对此问题,提出基于反向学习策略的交互式差分演化算法(interactive differential evolution algorithm based on opposition-based learning strategy,IDE-OBL),将传统交互式演化算法中人为提供适应值的交互方式转化为成对比较的方式,采用反向学习策略加快算法收敛,在一定程度上减少了用户评价次数。实验结果表明,在基于组件的卡通人脸生成问题中,IDE-OBL比未使用反向学习策略的IGA和IDE要好,减少了演化迭代次数,有利于用户疲劳程度的缓解。展开更多
文摘教与学优化(teaching-learning-based optimization,TLBO)算法是近年来提出的一种通过模拟"教"与"学"行为的群体智能算法。为了克服教与学优化算法容易早熟,解精度较低,后期收敛速度慢等弱点,提出了一种改进的教与学优化算法,并命名为S-TLBO(small world neighborhood TLBO)。该算法采用小世界网络作为其种群的空间结构关系,种群中的个体被看作是网络上的节点。在算法的"教"阶段,学生基于概率向教师个体进行学习,而在"学"阶段,学生则在自己的邻居节点中随机选择较为优秀的个体进行学习。为了提高加强算法的勘探新解和开采能力,引入教师个体执行反向学习算法。在多个经典的测试函数上的实验结果表明,所提出的改进算法具有较高的全局收敛性和解精度,适合于求解较高维度的多模态函数优化问题。
文摘基于组件的卡通人脸生成分为构件的组合及特征调整两阶段完成,可分别视为组合优化和连续优化问题解决。然而,人脸特征参数优化过程中很难用函数显性表示其优化目标,是典型的隐性目标优化问题。针对此问题,提出基于反向学习策略的交互式差分演化算法(interactive differential evolution algorithm based on opposition-based learning strategy,IDE-OBL),将传统交互式演化算法中人为提供适应值的交互方式转化为成对比较的方式,采用反向学习策略加快算法收敛,在一定程度上减少了用户评价次数。实验结果表明,在基于组件的卡通人脸生成问题中,IDE-OBL比未使用反向学习策略的IGA和IDE要好,减少了演化迭代次数,有利于用户疲劳程度的缓解。