期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Two-dimensional organic cathode materials for alkali-metal-ion batteries 被引量:4
1
作者 Chao Zhang Chenbao Lu +3 位作者 Fan Zhang Feng Qiu Xiaodong Zhuang Xinliang Feng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2018年第1期86-98,共13页
With the increasing demand for large-scale battery systems in electric vehicles(EVs) and smart renewable energy grids, organic materials including small molecules and polymers utilized as electrodes in rechargeable ... With the increasing demand for large-scale battery systems in electric vehicles(EVs) and smart renewable energy grids, organic materials including small molecules and polymers utilized as electrodes in rechargeable batteries have received increasing attraction. In recent years, two-dimensional(2D) organic materials possessing planar layered architecture exhibit optional chemical modification, high specific surface area as well as unique electrical/magnetic properties, which have been emerging as the promising functional materials for wide applications in optoelectronics, catalysis, sensing, etc. Integrating with high-density redox-active sites and hierarchical porous structure, significant achievements in 2D organic materials as cathode materials for alkali-metal-ion batteries have been witnessed. In this review, the recent progress in synthetic approaches, structure analyses, electrochemical characterizations of 2D organic materials as well as their application in alkali-metal-ion batteries containing lithium ion battery(LIB), lithium sulfur battery(LSB), lithium air battery(LAB) and sodium ion battery(SIB) are summarized systematically,and their current challenges including cycling stability and electron conductivity for cathode materials in battery fields are also discussed. 展开更多
关键词 organic material Two-dimensional Cathode Alkali-metal-ion battery
下载PDF
Carbonyl polymeric electrode materials for metal-ion batteries 被引量:5
2
作者 Mi Tang Hongyang Li +1 位作者 Erjing Wang Chengliang Wang 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第2期232-244,共13页
Benefiting from the diversity and subjective design feasibility of molecular structure, flexibility,lightweight, molecular level controllability, resource renewability and relatively low cost, polymeric electrode mate... Benefiting from the diversity and subjective design feasibility of molecular structure, flexibility,lightweight, molecular level controllability, resource renewability and relatively low cost, polymeric electrode materials are promising candidates for the next generation of sustainable energy resources and have attracted extensive attention for the foreseeable large scale applications. The conductive polymers have been utilized as electrode materials in the pioneer reports, which, however, have the disadvantages of low stability, low reversibility and slope voltage due to the delocalization of charges in the whole conjugated systems. The discovery of carbonyl materials aroused the interest of organic and polymeric materials for batteries again. This review presents the recent progress in carbonyl polymeric electrode materials for lithium-ion batteries, sodium-ion batteries and magnesium-ion batteries. This comprehensive review is expected to be helpful forarousing more interest of organic materials for met 展开更多
关键词 Carbonyl polymers organic lithium-ion batteries organic sodium-ion batteries Energy storage Electrode materials
原文传递
Pressure-induced polymerization of butyndioic acid and its Li^+ salt
3
作者 Mufei Yue Yajie Wang +4 位作者 Lijuan Wang Xiaohuan Lin Kuo Li Haiyan Zheng Tao Yang 《Chinese Chemical Letters》 SCIE CAS CSCD 2018年第2期328-330,共3页
Conductive organic polymers with carbonyl groups are considered as potential cathode materials of the Li^+ battery. Driven by extremely high pressure, 2-butyndioic acid and its Li~+ salt polymerize at around 4 and 1... Conductive organic polymers with carbonyl groups are considered as potential cathode materials of the Li^+ battery. Driven by extremely high pressure, 2-butyndioic acid and its Li~+ salt polymerize at around 4 and 10 GPa, respectively, which demonstrates that pressure-induced polymerization is a robust method for synthesizing substituted polyacetylene-like conductors. 展开更多
关键词 High pressure Lithium battery organic cathode material Polymerization Alkyne
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部