期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Physical Mechanism of Organic Matter-Mineral Interaction in Longmaxi Shale,Sichuan Basin,China 被引量:8
1
作者 ZHAO Jianhua JIN Zhijun +2 位作者 JIN Zhenkui WEN Xin GENG Yikai 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2016年第5期1923-1924,共2页
Objective Shale gas is as an important kind of unconventional natural gas,with a great resource potential,and its exploration and development has attracted much attention around the world.Organic matter(OM)pores are... Objective Shale gas is as an important kind of unconventional natural gas,with a great resource potential,and its exploration and development has attracted much attention around the world.Organic matter(OM)pores are a common constituent in shales and form the dominant pore network of many shale gas systems. 展开更多
关键词 OM Physical Mechanism of organic Matter-Mineral interaction in Longmaxi Shale Sichuan Basin China
下载PDF
Biological Interaction and Imaging of Ultrasmall Gold Nanoparticles 被引量:1
2
作者 Dongmiao Sang Xiaoxi Luo Jinbin Liu 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期69-98,共30页
Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticl... Ultrasmall gold nanoparticles(AuNPs)typically includes atomically precise gold nanoclusters(AuNCs)and AuNPs with a core size below 3 nm.Serving as a bridge between small molecules and traditional inorganic nanoparticles,the ultrasmall AuNPs show the unique advantages of both small molecules(e.g.,rapid distribution,renal clearance,low non-specific organ accumulation)and nanoparticles(e.g.,long blood circulation and enhanced permeability and retention effect).The emergence of ultrasmall AuNPs creates significant opportunities to address many challenges in the health field including disease diagnosis,monitoring and treatment.Since the nano–bio interaction dictates the overall biological applications of the ultrasmall AuNPs,this review elucidates the recent advances in the biological interactions and imaging of ultrasmall AuNPs.We begin with the introduction of the factors that influence the cellular interactions of ultrasmall AuNPs.We then discuss the organ interactions,especially focus on the interactions of the liver and kidneys.We further present the recent advances in the tumor interactions of ultrasmall AuNPs.In addition,the imaging performance of the ultrasmall AuNPs is summarized and discussed.Finally,we summarize this review and provide some perspective on the future research direction of the ultrasmall AuNPs,aiming to accelerate their clinical translation. 展开更多
关键词 Ultrasmall gold nanoparticle Cellular interaction Organ interaction Tumor interaction BIOIMAGING
下载PDF
Interaction between Low Energy ions and the Complicated Organism 被引量:4
3
作者 余增亮 《Plasma Science and Technology》 SCIE EI CAS CSCD 1999年第1期79-85,共7页
Low energy ions exist widely in natural world, but people pay a little attention on. the interaction between low energy ions and matter, it is even more out of the question of studying on the relation of low energy io... Low energy ions exist widely in natural world, but people pay a little attention on. the interaction between low energy ions and matter, it is even more out of the question of studying on the relation of low energy ions and the complicated organism. The discovery of bioeffect induced by ion implantation has, however, opened a new branch in the field of ion beam application in life sciences. This paper reports recent advances in research on the role of low energy ions in Chemical synthesis of the biomolecules and application in genetic modification. 展开更多
关键词 CM interaction between Low Energy ions and the Complicated Organism
下载PDF
Interactions between engineered nanoparticles and dissolved organic matter: A review on mechanisms and environmental effects 被引量:14
4
作者 Sujuan Yu Jingfu Liu +1 位作者 Yongguang Yin Mohai Shen 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2018年第1期198-217,共20页
Dissolved organic matter(DOM) is ubiquitous in the environment and has high reactivity.Once engineered nanoparticles(ENPs) are released into natural systems, interactions of DOM with ENPs may significantly affect ... Dissolved organic matter(DOM) is ubiquitous in the environment and has high reactivity.Once engineered nanoparticles(ENPs) are released into natural systems, interactions of DOM with ENPs may significantly affect the fate and transport of ENPs, as well as the bioavailability and toxicity of ENPs to organisms. However, because of the complexity of DOM and the shortage of useful characterization methods, large knowledge gaps exist in our understanding of the interactions between DOM and ENPs. In this article, we systematically reviewed the interactions between DOM and ENPs, discussed the effects of DOM on the environmental behavior of ENPs, and described the changes in bioavailability and toxicity of ENPs caused by DOM. Critical evaluations of published references suggest further need for assessing and predicting the influences of DOM on the transport,transformation, bioavailability, and toxicity of ENPs in the environment. 展开更多
关键词 Dissolved organic matter Engineered nanoparticles interaction mechanisms Environmental behavior Toxicity Bioavailability
原文传递
Classroom Organization: from Teachers to Students
5
作者 Meihua Zhong 《Sino-US English Teaching》 2006年第9期57-60,78,共5页
In the present article, the author looks into several influential questions that are too often given insufficient emphasis in the classroom teaching and the following conclusions are reached through the research: (1... In the present article, the author looks into several influential questions that are too often given insufficient emphasis in the classroom teaching and the following conclusions are reached through the research: (1) Classroom is a behavior setting where students of different characteristics come to bring about desirable changes. Different strategies must be used to meet their needs; (2) Teachers are not just transmitters of knowledge; they must be an educator as well as a helpful person; (3) Students should be encouraged to communicate with teachers and their peers to achieve a conducive classroom climate. 展开更多
关键词 classroom organization teaching style classroom climate interaction
下载PDF
Effect of the position of substitution on the electronic properties of nitrophenyl derivatives of fulleropyrrolidines:Fundamental understanding toward raising LUMO energy of fullerene electron-acceptor 被引量:3
6
作者 Xuan Zhang Xu-Dong Li 《Chinese Chemical Letters》 SCIE CAS CSCD 2014年第4期501-504,共4页
A series of substituted para-, meta- and ortho-nitrophenyl derivatives of fulleropyrrolidine were synthesized to investigate the effects of the position of substitution on electronic properties by using steady-state a... A series of substituted para-, meta- and ortho-nitrophenyl derivatives of fulleropyrrolidine were synthesized to investigate the effects of the position of substitution on electronic properties by using steady-state absorption and fluorescence spectra, combined with DFT calculations. The results confirmed that the position of substitution has little effect on absorption and fluorescence spectra, whereas a significant effect was observed on their LUMO energy levels. The theoretical calculations revealed that the LUMO energy of the ortho-nitrophenyl substituted derivative was increased 0.1 eV above those ofpara- and meta-substitution. The prominent effect ofortho-substitution was attributed to the through-space orbital interaction between spatially closed electron-withdrawing nitro group and fullerene cage. These findings could provide fundamental insights in raising LUMO levels of C6o-based electron acceptor materials and an alternative strategy to increase open circuit voltage Voc in polymer solar cells. 展开更多
关键词 Fullerene Substituent effect Orbital interaction organic photovoltaics
原文传递
Acid-catalyzed heterogeneous reaction of 3-methyl-2-buten-1-ol with hydrogen peroxide 被引量:1
7
作者 Qifan Liu Weigang Wang Maofa Ge 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2015年第5期89-97,共9页
Acid-catalyzed heterogeneous oxidation with hydrogen peroxide(H2O2) has been suggested to be a potential pathway for secondary organic aerosol(SOA) formation from isoprene and its oxidation products. However, know... Acid-catalyzed heterogeneous oxidation with hydrogen peroxide(H2O2) has been suggested to be a potential pathway for secondary organic aerosol(SOA) formation from isoprene and its oxidation products. However, knowledge of the chemical mechanism and kinetics for this process is still incomplete. 3-Methyl-2-buten-1-ol(MBO321), an aliphatic alcohol structurally similar to isoprene, is emitted by pine forests and widely used in the manufacturing industries. Herein the uptake of MBO321 into H2SO4-H2O2mixed solution was investigated using a flow-tube reactor coupled to a mass spectrometer. The reactive uptake coefficients(γ) were acquired for the first time and were found to increase rapidly with increasing acid concentration. Corresponding aqueous-phase reactions were performed to further study the mechanism of this acid-catalyzed reaction. MBO321 could convert to 2-methyl-3-buten-2-ol(MBO232) and yield isoprene in acidic media. Organic hydroperoxides(ROOHs) were found to be generated through the acid-catalyzed route,which could undergo a rearrangement reaction and result in the formation of acetone and acetaldehyde. Organosulfates, which have been proposed to be SOA tracer compounds in the atmosphere, were also produced during the oxidation process. These results suggest that the heterogeneous acid-catalyzed reaction of MBO321 with H2O2 may contribute to SOA mass under certain atmospheric conditions. 展开更多
关键词 Gas-liquid interaction Uptake coefficients organic hydroperoxide Organosulfate Secondary organic aerosol
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部