期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Organic Melt Crystallization as a Method for Synthesis of Supramolecular Complexes
1
作者 Masaaki Yokota Ryota Nakamura Norihito Doki 《Advances in Chemical Engineering and Science》 2016年第2期76-81,共6页
The most simple method for solventless synthesis of supramolecular complex of CMCR·2BPY·BZP, [CMCR = C-methylcalix[4]resorcinarene, BPY = 4,4'-bipyridine, BZP = benzophenone], is proposed. Although CMCR ... The most simple method for solventless synthesis of supramolecular complex of CMCR·2BPY·BZP, [CMCR = C-methylcalix[4]resorcinarene, BPY = 4,4'-bipyridine, BZP = benzophenone], is proposed. Although CMCR by itself is high melting point compound (above 300°C), CMCR was found to be dissolved in melt mixture of BPY and BZPeven below 120°C. In the mixture of the three components, the reaction occurs to form CMCR·2BPY·BZP supramolecular complex. 展开更多
关键词 organic melt Crystallization as a Method for Synthesis of Supramolecular Complexes
下载PDF
Frontiers of 3D Printing/Additive Manufacturing: from Human Organs to Aircraft Fabrication 被引量:10
2
作者 Lawrence E.Murr 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2016年第10期987-995,共9页
It has been more than three decades since stereolithography began to emerge in various forms of additive manufacturing and 3D printing. Today these technologies are proliferating worldwide in various forms of advanced... It has been more than three decades since stereolithography began to emerge in various forms of additive manufacturing and 3D printing. Today these technologies are proliferating worldwide in various forms of advanced manufacturing. The largest segment of the 3D printing market today involves various polymer component fabrications, particularly complex structures not attainable by other manufacturing methods.Conventional printer head systems have also been adapted to selectively print various speciated human cells and special molecules in attempts to construct human organs, beginning with skin and various tissue patches. These efforts are discussed along with metal and alloy fabrication of a variety of implant and bone replacement components by creating powder layers, which are selectively melted into complex forms(such as foams and other open-cellular structures) using laser and electron beams directed by CAD software. Efforts to create a "living implant" by bone ingrowth and eventual vascularization within these implants will be discussed briefly. Novel printer heads for direct metal droplet deposition as in other 3D printing systems are briefly described since these concepts will allow for the eventual fabrication of very large and complex products, including automotive and aerospace structures and components. 展开更多
关键词 3D printing/additive manufacturing Laser and electron beam melting Organ printing Organ and implant vascularization Metal droplet printing
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部