The present study describes the characterization of crude protease extract from Arthrobacter arilaitensis Re117 and its evaluation in solid and liquid detergent. One caseinolytic protease clear band was observed in zy...The present study describes the characterization of crude protease extract from Arthrobacter arilaitensis Re117 and its evaluation in solid and liquid detergent. One caseinolytic protease clear band was observed in zymogram. The crude alkaline protease showed optimum activity at pH 9.0 and 50°C, and it was highly stable over a wide range of pH from 8.0 to 9.0. Proteolytic enzymes showed extreme stability towards non-ionic surfactants (Tween 80, Tween 20 and Triton X-100) and stimulate activity towards oxidizing agents such as sodium perborate. They also showed high stability and compatibility with various laundry solid detergents from Tunisian market. The protease of A. arilaitensis Re117, was also tested for shrimp waste deproteinization to produce chitin. The protein removal with a ratio E/S of 20 was about 83%. The novelties of the Re117 protease include its high stability to organic solvents and surfactants. These unique properties make it an ideal choice for application in detergent formulations and enzymatic peptide synthesis. In addition, the enzyme may find potential applications in the deproteinization of shrimp wastes to produce chitin.展开更多
In this work, metal-organic frameworks (MOFs) FJU-21 was synthesized by solvothermal method. The crystal structure of FJU-21 was characterized by XRD and BET and it was applied to the catalytic hydrolysis of bovine se...In this work, metal-organic frameworks (MOFs) FJU-21 was synthesized by solvothermal method. The crystal structure of FJU-21 was characterized by XRD and BET and it was applied to the catalytic hydrolysis of bovine serum albumin. The effects of reaction pH, temperature and reaction time on the catalytic activity of FJU-21 were studied. FJU-21 were found to possess an intrinsic enzyme mimicking activity similar to that found in trypsin. The Michaelis constant (Km) of the artificial protease (0.18 × 10-3 - 0.20 × 10-3 M-1) was about 15-fold lower than that free trypsin (2.7 × 10-3 M-1) and about 3-fold lower than that of soluble Cu(II) oxacyclen (0.54 × 10-3 M-1). The Kcat of FJU-21 is 102 times higher than that of soluble Cu(II) oxacyclen catalysts and, indicating a much higher affinity of BSA for FJU-21 surface. FJU-21 could be reused for eleven times without losing in its activity.展开更多
Protease inhibitors have been isolated from many variable sources;however, the need to identify and characterize new molecules has increased with the discovery of new therapeutic targets and the lack of specificity of...Protease inhibitors have been isolated from many variable sources;however, the need to identify and characterize new molecules has increased with the discovery of new therapeutic targets and the lack of specificity of already identified compounds with inhibitory activity. The goal of this work was to search for inhibitory activity against four proteolytic enzymes already recognized as therapeutic targets: human neutrophil elastase, dipeptidyl peptidase IV, subtilisin from Bacillus licheniformis and cathepsin K in selected marine invertebrates from the Caribbean Sea. A systematic screening was carried out with selected aqueous extracts belonging to 20 species from seven different phyla: Annelida, Bryozoa, Chordata, Cnidaria, Equinodermata, Mollusca and Porifera, all collected at the coast of Havana (Cuba). All extracts showing initial inhibitory activity were characterized in terms of IC<sub>50</sub> values and specific inhibitory activity (SIA). Model enzymes were used in the case of human neutrophil elastase (porcine pancreatic elastase) and cathepsin K (papain) for the screening and all positive results were confirmed by testing toward the therapeutic targets. Ten extracts were identified showing inhibitory activity against human neutrophil elastase, for which the most promising values were obtained for Nerita peloronta. Only one extract, Bunodosoma granulifera, showed inhibitory activity against dipeptidyl peptidase IV with rather poor values of IC<sub>50</sub> and SIA. Seven extracts showed inhibitory activity against B. licheniformis subtilisin with very good IC<sub>50</sub> and SIA values for Lissodendorix isodyctialis, Cenchritis muricatus, and N. peloronta. Finally, eight extracts were positive for cathepsin K with almost similar parameters values among them. All these results confirmed the richness and potential of the marine invertebrate’s fauna and indicated new promising sources for the identification of natural compounds with potential application in therapeutics.展开更多
The levels of soluble, structural and total proteins, and the activities of AlAT and AAT decreased along with an increase in the levels of free amino acids and the activity of protease in the ctenidium, hepatopancreas...The levels of soluble, structural and total proteins, and the activities of AlAT and AAT decreased along with an increase in the levels of free amino acids and the activity of protease in the ctenidium, hepatopancreas and foot of the freshwater mussel L. marginalis after 1,2,3 and 4 d of exposure to a lethal concentration (115 mg.L-1) of nickel. But the activity of GDH and the level of urea decreased in the hepatopancreas and increased in the ctenidium and foot. A reverse trend was observed in the level of ammonia. In a sublethal concentration (23 mg.L-1), the levels of soluble, structural and total proteins and ammonia decreased in these three organs of the mussel after 1, 5, 10 and 15 d of exposures, with an increase in the levels.of free aminoacids, urea and in the activities of protease, Al AT, AAT and ODH. The extent of these changes differed in degree depending on exposure period in the lethal and sublethal concentrations. The results are discussed in order to arrive at the degree of metal stress on the overall nitrogen metabolism of the mussel according to the period of exposure to lethal and sublethal concentrations of nickel.展开更多
Objective:The novel coronavirus(severe acute respiratory syndrome coronavirus 2)has been spreading worldwide since December 2019,posing a serious danger to human health and socioeconomic development.A large number of ...Objective:The novel coronavirus(severe acute respiratory syndrome coronavirus 2)has been spreading worldwide since December 2019,posing a serious danger to human health and socioeconomic development.A large number of clinical trials have revealed that coronavirus disease 2019(COVID-19)results in multi-organ damage including the urogenital system.This study aimed to explore the potential mechanisms of genitourinary damage associated with COVID-19 infection through bioinformatics and molecular simulation analysis.Methods:We used multiple publicly available databases to explore the expression patterns of angiotensin-converting enzyme 2(ACE2),transmembrane serine protease 2(TMPRSS2),and CD147 in major organs in the healthy and disease-specific populations,particularly the genitourinary organs.Single-cell RNA sequencing was used to analyze the cell-specific expression patterns of ACE2,TMPRSS2,CD147,cytokine receptors,and cytokine interacting proteins in genitourinary organs,such as the bladder,kidney,prostate,and testis.Additionally,gene set enrichmentanalysis was used to investigate the relationship between testosterone levels and COVID-19 vulnerability in patients with prostate cancer.Results:The results revealed that ACE2,TMPRSS2,and CD147 were highly expressed in normal urogenital organs.Then,they were also highly expressed in multiple tumors and chronic kidney diseases.Additionally,ACE2,TMPRSS2,and CD147 were significantly expressed in a range of cells in urogenital organs according to single-cell RNA sequencing.Cytokine receptors and cytokine interacting proteins,especially CCL2,JUN,and TIMP1,were commonly highly expressed in urogenital organs.Finally,gene set enrichment analysis results showed that high testosterone levels in prostate cancer patients were significantly related to the JAK-STAT signaling pathway and the Toll-like receptor signaling pathway which were associated with COVID-19.Conclusion:Our study provides new insights into the potential mechanisms of severe acute respiratory syndrome coronavirus 2 damage to urogenital organs from multiple perspectives,which may draw the attention of urologists to COVID-19 and contribute to the development of targeted drugs.展开更多
文摘The present study describes the characterization of crude protease extract from Arthrobacter arilaitensis Re117 and its evaluation in solid and liquid detergent. One caseinolytic protease clear band was observed in zymogram. The crude alkaline protease showed optimum activity at pH 9.0 and 50°C, and it was highly stable over a wide range of pH from 8.0 to 9.0. Proteolytic enzymes showed extreme stability towards non-ionic surfactants (Tween 80, Tween 20 and Triton X-100) and stimulate activity towards oxidizing agents such as sodium perborate. They also showed high stability and compatibility with various laundry solid detergents from Tunisian market. The protease of A. arilaitensis Re117, was also tested for shrimp waste deproteinization to produce chitin. The protein removal with a ratio E/S of 20 was about 83%. The novelties of the Re117 protease include its high stability to organic solvents and surfactants. These unique properties make it an ideal choice for application in detergent formulations and enzymatic peptide synthesis. In addition, the enzyme may find potential applications in the deproteinization of shrimp wastes to produce chitin.
文摘In this work, metal-organic frameworks (MOFs) FJU-21 was synthesized by solvothermal method. The crystal structure of FJU-21 was characterized by XRD and BET and it was applied to the catalytic hydrolysis of bovine serum albumin. The effects of reaction pH, temperature and reaction time on the catalytic activity of FJU-21 were studied. FJU-21 were found to possess an intrinsic enzyme mimicking activity similar to that found in trypsin. The Michaelis constant (Km) of the artificial protease (0.18 × 10-3 - 0.20 × 10-3 M-1) was about 15-fold lower than that free trypsin (2.7 × 10-3 M-1) and about 3-fold lower than that of soluble Cu(II) oxacyclen (0.54 × 10-3 M-1). The Kcat of FJU-21 is 102 times higher than that of soluble Cu(II) oxacyclen catalysts and, indicating a much higher affinity of BSA for FJU-21 surface. FJU-21 could be reused for eleven times without losing in its activity.
文摘Protease inhibitors have been isolated from many variable sources;however, the need to identify and characterize new molecules has increased with the discovery of new therapeutic targets and the lack of specificity of already identified compounds with inhibitory activity. The goal of this work was to search for inhibitory activity against four proteolytic enzymes already recognized as therapeutic targets: human neutrophil elastase, dipeptidyl peptidase IV, subtilisin from Bacillus licheniformis and cathepsin K in selected marine invertebrates from the Caribbean Sea. A systematic screening was carried out with selected aqueous extracts belonging to 20 species from seven different phyla: Annelida, Bryozoa, Chordata, Cnidaria, Equinodermata, Mollusca and Porifera, all collected at the coast of Havana (Cuba). All extracts showing initial inhibitory activity were characterized in terms of IC<sub>50</sub> values and specific inhibitory activity (SIA). Model enzymes were used in the case of human neutrophil elastase (porcine pancreatic elastase) and cathepsin K (papain) for the screening and all positive results were confirmed by testing toward the therapeutic targets. Ten extracts were identified showing inhibitory activity against human neutrophil elastase, for which the most promising values were obtained for Nerita peloronta. Only one extract, Bunodosoma granulifera, showed inhibitory activity against dipeptidyl peptidase IV with rather poor values of IC<sub>50</sub> and SIA. Seven extracts showed inhibitory activity against B. licheniformis subtilisin with very good IC<sub>50</sub> and SIA values for Lissodendorix isodyctialis, Cenchritis muricatus, and N. peloronta. Finally, eight extracts were positive for cathepsin K with almost similar parameters values among them. All these results confirmed the richness and potential of the marine invertebrate’s fauna and indicated new promising sources for the identification of natural compounds with potential application in therapeutics.
文摘The levels of soluble, structural and total proteins, and the activities of AlAT and AAT decreased along with an increase in the levels of free amino acids and the activity of protease in the ctenidium, hepatopancreas and foot of the freshwater mussel L. marginalis after 1,2,3 and 4 d of exposure to a lethal concentration (115 mg.L-1) of nickel. But the activity of GDH and the level of urea decreased in the hepatopancreas and increased in the ctenidium and foot. A reverse trend was observed in the level of ammonia. In a sublethal concentration (23 mg.L-1), the levels of soluble, structural and total proteins and ammonia decreased in these three organs of the mussel after 1, 5, 10 and 15 d of exposures, with an increase in the levels.of free aminoacids, urea and in the activities of protease, Al AT, AAT and ODH. The extent of these changes differed in degree depending on exposure period in the lethal and sublethal concentrations. The results are discussed in order to arrive at the degree of metal stress on the overall nitrogen metabolism of the mussel according to the period of exposure to lethal and sublethal concentrations of nickel.
文摘Objective:The novel coronavirus(severe acute respiratory syndrome coronavirus 2)has been spreading worldwide since December 2019,posing a serious danger to human health and socioeconomic development.A large number of clinical trials have revealed that coronavirus disease 2019(COVID-19)results in multi-organ damage including the urogenital system.This study aimed to explore the potential mechanisms of genitourinary damage associated with COVID-19 infection through bioinformatics and molecular simulation analysis.Methods:We used multiple publicly available databases to explore the expression patterns of angiotensin-converting enzyme 2(ACE2),transmembrane serine protease 2(TMPRSS2),and CD147 in major organs in the healthy and disease-specific populations,particularly the genitourinary organs.Single-cell RNA sequencing was used to analyze the cell-specific expression patterns of ACE2,TMPRSS2,CD147,cytokine receptors,and cytokine interacting proteins in genitourinary organs,such as the bladder,kidney,prostate,and testis.Additionally,gene set enrichmentanalysis was used to investigate the relationship between testosterone levels and COVID-19 vulnerability in patients with prostate cancer.Results:The results revealed that ACE2,TMPRSS2,and CD147 were highly expressed in normal urogenital organs.Then,they were also highly expressed in multiple tumors and chronic kidney diseases.Additionally,ACE2,TMPRSS2,and CD147 were significantly expressed in a range of cells in urogenital organs according to single-cell RNA sequencing.Cytokine receptors and cytokine interacting proteins,especially CCL2,JUN,and TIMP1,were commonly highly expressed in urogenital organs.Finally,gene set enrichment analysis results showed that high testosterone levels in prostate cancer patients were significantly related to the JAK-STAT signaling pathway and the Toll-like receptor signaling pathway which were associated with COVID-19.Conclusion:Our study provides new insights into the potential mechanisms of severe acute respiratory syndrome coronavirus 2 damage to urogenital organs from multiple perspectives,which may draw the attention of urologists to COVID-19 and contribute to the development of targeted drugs.