In our previous studies, we identified 3 Trichoderma strains with anti-Fusarium oxysporum activity, including T. asperellum 525, T. harzianum 610, and T. pseudokoningii 886. Here, we evaluated the effects of these 3 T...In our previous studies, we identified 3 Trichoderma strains with anti-Fusarium oxysporum activity, including T. asperellum 525, T. harzianum 610, and T. pseudokoningii 886. Here, we evaluated the effects of these 3 Trichoderma strains on preventing cucumber fusarium wilt through pot culture and greenhouse culture experiments. All 3 Trichoderma strains demonstrated higher control effects toward cucumber fusarium wilt than previous studies, with efficacies over 78%. Additionally, inoculation with the 3 Trichoderma strains significantly promoted the quality and yield of cucumbers. Among the 3 strains, Trichoderma 866 was the most effective, with disease control efficacy of 78.64% and a cucumber yield increase of 33%. Furthermore, seedlings inoculated with Trichoderma exhibited significantly increased measures of plant height, stem diameter, leaf area, aboveground fresh weight, underground fresh weight, chlorophyll content, and nitric nitrogen content, as well as the activities of several stress-resistance enzymes, including superoxide dismutase(SOD), peroxidase(POD), catalase(CAT), polyphenol oxidase(PPO), and ascorbate oxidase(AAO). In addition, the plants inoculated with Trichoderma showed decreased cell membrane permeability and malondialdehyde(MDA) content in the leaves. Together, our results suggest that T. asperellum 525, T. harzianum 610, and T. pseudokoningii 886 inoculations inhibit F. oxysporum infection, stimulate the metabolism in cucumbers, and enhance the activities of stress-resistance enzymes, which consequently promote the growth of cucumber plants, prevent cucumber fusarium wilt, and improve the yield and quality of cucumbers. T. harzianum is a commonly used biocontrol fungus, while few studies have focused on T. asperellum or T. koningense. In this study, strains of T. asperellum and T. pseudokoningii showed excellent plant disease prevention and growth promoting effects on cucumber, indicating that they also have great potential as biocontrol fungi.展开更多
Biological soil disinfestation is an effective method to control soil-borne disease by flooding and incorporating with organic amendments, but field conditions and resources sometimes limited its practical application...Biological soil disinfestation is an effective method to control soil-borne disease by flooding and incorporating with organic amendments, but field conditions and resources sometimes limited its practical application. A laboratory experiment was conducted to develop practice guidelines on controlling Fusarium wilt, a widespread banana disease caused by Fusarium oxysporum f. sp. cubense(FOC). FOC infested soil incorporated with rice or maize straw at rates of 1.5 tons/ha and 3.0 tons/ha was incubated under flooded or water-saturated(100% water holding capacity) conditions at 30℃ for 30 days. Results showed that FOC populations in the soils incorporated with either rice or maize straw rapidly reduced more than 90% in the first 15 days and then fluctuated till the end of incubation, while flooding alone without organic amendment reduced FOC populations slightly. The rapid and dramatic decrease of redox potential(down to- 350 m V) in straw-amended treatments implied that both anaerobic condition and strongly reductive soil condition would contribute to pathogen inactivation. Water-saturation combined with straw amendments had the comparable effects on reduction of FOC, indicating that flooding was not indispensable for inactivating FOC. There was no significant difference in the reduction of FOC observed in the straw amendments at between 1.5 and 3 tons/ha. Therefore,incorporating soil with straw(rice or maize straw) at a rate of 3.0 tons/ha under 100%water holding capacity or 1.5 tons/ha under flooding, would effectively alleviate banana Fusarium wilt caused by FOC after 15-day treating under 30℃.展开更多
基金support from the National Key R&D Program of China (2018YFD0201202)the National Science and Technology Basic Work, China (2014FY120900)the 948 Program of China (2011-G4)
文摘In our previous studies, we identified 3 Trichoderma strains with anti-Fusarium oxysporum activity, including T. asperellum 525, T. harzianum 610, and T. pseudokoningii 886. Here, we evaluated the effects of these 3 Trichoderma strains on preventing cucumber fusarium wilt through pot culture and greenhouse culture experiments. All 3 Trichoderma strains demonstrated higher control effects toward cucumber fusarium wilt than previous studies, with efficacies over 78%. Additionally, inoculation with the 3 Trichoderma strains significantly promoted the quality and yield of cucumbers. Among the 3 strains, Trichoderma 866 was the most effective, with disease control efficacy of 78.64% and a cucumber yield increase of 33%. Furthermore, seedlings inoculated with Trichoderma exhibited significantly increased measures of plant height, stem diameter, leaf area, aboveground fresh weight, underground fresh weight, chlorophyll content, and nitric nitrogen content, as well as the activities of several stress-resistance enzymes, including superoxide dismutase(SOD), peroxidase(POD), catalase(CAT), polyphenol oxidase(PPO), and ascorbate oxidase(AAO). In addition, the plants inoculated with Trichoderma showed decreased cell membrane permeability and malondialdehyde(MDA) content in the leaves. Together, our results suggest that T. asperellum 525, T. harzianum 610, and T. pseudokoningii 886 inoculations inhibit F. oxysporum infection, stimulate the metabolism in cucumbers, and enhance the activities of stress-resistance enzymes, which consequently promote the growth of cucumber plants, prevent cucumber fusarium wilt, and improve the yield and quality of cucumbers. T. harzianum is a commonly used biocontrol fungus, while few studies have focused on T. asperellum or T. koningense. In this study, strains of T. asperellum and T. pseudokoningii showed excellent plant disease prevention and growth promoting effects on cucumber, indicating that they also have great potential as biocontrol fungi.
基金supported by the National Natural Science Foundation of China (Nos. 41222005, 41330744, 413301335)the Natural Science Foundation of Jiangsu Province (Nos. BK2010611, SBK201220477)+1 种基金Research Fund of State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences (Y412201404)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Biological soil disinfestation is an effective method to control soil-borne disease by flooding and incorporating with organic amendments, but field conditions and resources sometimes limited its practical application. A laboratory experiment was conducted to develop practice guidelines on controlling Fusarium wilt, a widespread banana disease caused by Fusarium oxysporum f. sp. cubense(FOC). FOC infested soil incorporated with rice or maize straw at rates of 1.5 tons/ha and 3.0 tons/ha was incubated under flooded or water-saturated(100% water holding capacity) conditions at 30℃ for 30 days. Results showed that FOC populations in the soils incorporated with either rice or maize straw rapidly reduced more than 90% in the first 15 days and then fluctuated till the end of incubation, while flooding alone without organic amendment reduced FOC populations slightly. The rapid and dramatic decrease of redox potential(down to- 350 m V) in straw-amended treatments implied that both anaerobic condition and strongly reductive soil condition would contribute to pathogen inactivation. Water-saturation combined with straw amendments had the comparable effects on reduction of FOC, indicating that flooding was not indispensable for inactivating FOC. There was no significant difference in the reduction of FOC observed in the straw amendments at between 1.5 and 3 tons/ha. Therefore,incorporating soil with straw(rice or maize straw) at a rate of 3.0 tons/ha under 100%water holding capacity or 1.5 tons/ha under flooding, would effectively alleviate banana Fusarium wilt caused by FOC after 15-day treating under 30℃.