Adjusting agronomic measures to alleviate the kernel position effect in maize is important for ensuring high yields.In order to clarify whether the combined application of organic fertilizer and chemical fertilizer(CA...Adjusting agronomic measures to alleviate the kernel position effect in maize is important for ensuring high yields.In order to clarify whether the combined application of organic fertilizer and chemical fertilizer(CAOFCF)can alleviate the kernel position effect of summer maize,field experiments were conducted during the 2019 and 2020 growing seasons,and five treatments were assessed:CF,100%chemical fertilizer;OFCF1,15%organic fertilizer+85%chemical fertilizer;OFCF2,30%organic fertilizer+70%chemical fertilizer;OFCF3,45%organic fertilizer+55%chemical fertilizer;and OFCF4,60%organic fertilizer+40%chemical fertilizer.Compared with the CF treatment,the OFCF1 and OFCF2 treatments significantly alleviated the kernel position effect by increasing the weight ratio of inferior kernels to superior kernels and reducing the weight gap between the superior and inferior kernels.These effects were largely due to the improved filling and starch accumulation of inferior kernels.However,there were no obvious differences in the kernel position effect among plants treated with CF,OFCF3,or OFCF4 in most cases.Leaf area indexes,post-silking photosynthetic rates,and net assimilation rates were higher in plants treated with OFCF1 or OFCF2 than in those treated with CF,reflecting an enhanced photosynthetic capacity and improved postsilking dry matter accumulation(DMA)in the plants treated with OFCF1 or OFCF2.Compared with the CF treatment,the OFCF1 and OFCF2 treatments increased post-silking N uptake by 66.3 and 75.5%,respectively,which was the major factor driving post-silking photosynthetic capacity and DMA.Moreover,the increases in root DMA and zeatin riboside content observed following the OFCF1 and OFCF2 treatments resulted in reduced root senescence,which is associated with an increased post-silking N uptake.Analyses showed that post-silking N uptake,DMA,and grain yield in summer maize were negatively correlated with the kernel position effect.In conclusion,the combined application of 15-30%organic fertilizer and 70-85%chemical fertilizer alleviated the kernel position effect in summer maize by improving post-silking N uptake and DMA.These results provide new insights into how CAOFCF can be used to improve maize productivity.展开更多
Excessive amounts of nitrogen(N)fertilizers are applied during wolfberry production,resulting in some soil problems as well as potential environmental risks in the Qinghai-Tibet Plateau.In this study,organic fertilize...Excessive amounts of nitrogen(N)fertilizers are applied during wolfberry production,resulting in some soil problems as well as potential environmental risks in the Qinghai-Tibet Plateau.In this study,organic fertilizers were used to replace part of the N fertilizer in wolfberry fields with different fertility levels.N fertilizer rates had 0,50,100,150,200,and 250 g N/plant.Organic fertilizer rates had 0,2,4,6,8,and 10 kg organic fertilizer/plant.The experimental treatments included 6 combinations of N0M10,N50M8,N100M6,N150M4,N200M2,and control was N250M0.The results showed that in the high-fertility soils,combinations of N150M4,N100M6 and N50M8 treatments were increased in yields,fruit shape index,flavonoid content,total phenol content,mineral nutrient content,and antioxidant activity of wolfberry fruits.Also they were improved in soil fertility and decreased in residual nitrate through the soil depth of 0-300 cm.In the soil with less fertility,fruit yield,amino acid contents,flavonoids,total phenols,mineral nutrients and antioxidant activity of fruits were increased by the N200M2,N150M4 and N100M6 treatments and soil fertility was improved as well.Also more residual nitrate was found in the depth of 0-100 cm of soil with both chemical and organic fertilizer compared with the control.Therefore,in the Qinghai-Tibet Plateau,combining decreased N fertilizer with organic fertilizer rather than chemical fertilizer alone could help farmers achieve satisfactory yields and quality of wolfberry fruits and reduce the risk of nitrate leaching.In conclusion,50-150 g/plant of N fertilizer combined with 4-8 kg/plant of organic fertilizer in high-fertility gardens and 100-200 g/plant of N fertilizer combined with 2-6 kg/plant of organic fertilizer in low-fertility gardens are recommended for wolfberry cultivation.展开更多
Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer u...Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection.展开更多
To explore the effect of fertilizers on the yield and quality of Platostoma palustre,in this study,P.palustre was utilized as the research material,and field experiments were conducted with different application rates...To explore the effect of fertilizers on the yield and quality of Platostoma palustre,in this study,P.palustre was utilized as the research material,and field experiments were conducted with different application rates of compound fertilizer and organic fertilizer and non-targeted metabolomics analysis was further employed to compare and analyze the differences in the metabolic components between the compound fertilizer and organic fertilizer treatments.The results of field experiments demonstrated that both compound and organic fertilizers could promote the fresh weight,shade dry weight,and dry weight of P.palustre,with 450 kg hm−2 compound fertilizer and 4500 kg hm−2 organic fertilizer presenting the optimum effects.Non-targeted metabolomics revealed that 1096 metabolites were identified in 450 kg hm−2 compound fertilizer and 4500 kg hm−2 organic fertilizer,and 885 metabolites were annotated in the Human Metabolome Database(HMDB).There were 318 differential metabolites(DMs)found between the two treatments,and 263 metabolites were annotated in HMDB.The abundance of 2 phenolic compounds and 12 organic oxygen compounds in the treatment of 4500 kg hm−2 organic fertilizer was significantly higher than that of the 450 kg hm−2 compound fertilizer,while the abundance of 21 organic oxygen compounds,14 flavonoids,3 phenolic compounds,and 5 cinnamic acids and their derivatives was significantly up-regulated in 450 kg hm−2 compound fertilizer treatment.In addition,5 metabolic pathways were significantly enriched,and the flavone and flavonol biosynthesis was the most significantly differential metabolic pathway.These results suggested that the application of both compound fertilizers and organic fertilizers can increase the yield of P.palustre,but their effects on metabolites were different.This study has considerable implications for the planting and cultivation of P.palustre,furnishing a scientific foundation for an efficient and rational application of fertilizer.展开更多
Water-saving irrigation strategies can successfully alleviate methane emissions from rice fields,but significantly stimulate nitrous oxide(N_(2)O)emissions because of variations in soil oxygen level and redox potentia...Water-saving irrigation strategies can successfully alleviate methane emissions from rice fields,but significantly stimulate nitrous oxide(N_(2)O)emissions because of variations in soil oxygen level and redox potential.However,the relationship linking soil N_(2)O emissions to nitrogen functional genes during various fertilization treatments in water-saving paddy fields has rarely been investigated.Furthermore,the mitigation potential of organic fertilizer substitution on N_(2)O emissions and the microbial mechanism in rice fields must be further elucidated.Our study examined how soil N_(2)O emissions were affected by related functional microorganisms(ammonia-oxidizing archaea(AOA),ammonia-oxidizing bacteria(AOB),nirS,nirK and nosZ)to various fertilization treatments in a rice field in southeast China over two years.In this study,three fertilization regimes were applied to rice cultivation:a no nitrogen(N)(Control),an inorganic N(Ni),and an inorganic N with partial N substitution with organic manure(N_(i)+N_(o)).Over two rice-growing seasons,cumulative N_(2)O emissions averaged 0.47,4.62 and 4.08 kg ha^(−1)for the Control,Ni and N_(i)+N_(o)treatments,respectively.In comparison to the Ni treatment,the N_(i)+N_(o)fertilization regime considerably reduced soil N_(2)O emissions by 11.6%while maintaining rice yield,with a lower N_(2)O emission factor(EF)from fertilizer N of 0.95%.Nitrogen fertilization considerably raised the AOB,nirS,nirK and nosZ gene abundances,in comparison to the Control treatment.Moreover,the substitution of organic manure for inorganic N fertilizer significantly decreased AOB and nirS gene abundances and increased nosZ gene abundance.The AOB responded to N fertilization more sensitively than the AOA.Total N_(2)O emissions significantly correlated positively with AOB and nirS gene abundances while having a negative correlation with nosZ gene abundance and the nosZ/nirS ratio across N-fertilized plots.In summary,we conclude that organic manure substitution for inorganic N fertilizer decreased soil N_(2)O emissions primarily by changing the soil NO_(3)^(−)-N,pH and DOC levels,thus inhibiting the activities of ammonia oxidation in nitrification and nitrite reduction in denitrification,and strengthening N_(2)O reduction in denitrification from water-saving rice paddies.展开更多
The presence of acidic soil in rural areas poses difficulties for agricultural production.One factor regulating soil pH is the overuse of inorganic fertilizer.The increased use of fertilizers in soybean production not...The presence of acidic soil in rural areas poses difficulties for agricultural production.One factor regulating soil pH is the overuse of inorganic fertilizer.The increased use of fertilizers in soybean production not only raises sustainability concerns but also contributes to soil acidity.Therefore,the use of organic fertilizer could offer a solution for addressing both issues related to soil acidity and sustainability.The purpose of this study was to investigate the manipulation of soil pH using organic fertilizer for soybean production under acidic stress.The planting medium,consisting of a mixture of topsoil,rice husk charcoal,and organic fertilizer(in a ratio of 2:1:1),was supplemented with 0.5 g of NPK fertilizer as a basal treatment in each planting medium.To regulate the soil acidity to pH 4,we added FeSO_(4) and allowed the mixture to incubate for 30 days.The results demonstrate that the application of three types of organic fertilizers chicken manure(P1),oil palm empty bunch fertilizer(P2),and vermicompost(P3)positively impacts the growth of three soybean varieties.The findings indicate that the application of P2 organic fertilizer can increase vegetative growth almost 50%in soybeans on acidic soil,including plant height,leaf count,and root length.Meanwhile,applying P3 organic fertilizer can boost reproductive growth responses in soybeans on acidic soil,such as pod number(from around 0-4 unit to 42-51 unit),grain number(from around 0-5 unit to 88-90 unit),and grain weight(from around 0-0.37 g to 12-25 g).Organic fertilizer has the potential to regulate soil pH,promoting higher yields of soybeans under acidic stress.展开更多
[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the ap...[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the application scope and nitrogen metabolism mechanism, so as to lay a foundation for fertilizer reduction and efficiency improvement. [Methods] With maize variety Beiqing 340 and sulfur-coated urea as experimental materials, five nitrogen application levels were set, namely, control (C0), slow-release nitrogen 70 kg/hm^(2) (C70), slow-release nitrogen 140 kg/hm^(2) (C140), slow-release nitrogen 210 kg/hm^(2) (C210) and slow-release nitrogen 280 kg/hm^(2) (C280). The phosphorus and potassium fertilizers were all in accordance with the unified standard. [Results] With the application rate of slow-release nitrogen increasing, the nitrogen accumulation in organs increased first and then decreased after tasseling stage of maize. In order to reduce the fertilizing amount and increase efficiency, 210 kg/hm^(2) of slow-release nitrogen fertilizer was the best fertilizing amount for summer maize in Shajiang black soil area. [Conclusions] This study provides reference for fertilizer reduction, efficiency improvement and sustainable development of summer maize in Shajiang black soil area.展开更多
Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical...Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical fertilizer with organic manure affects rice yield,carbon sequestration rate(CSR),and nitrogen use efficiency(NUE)while ensuring environmental safety remains unclear.This study assessed the long-term effect of substituting chemical fertilizer with organic manure on rice yield,CSR,and NUE.It also determined the optimum substitution ratio in the acidic soil of southern China.The treatments were:(i)NPK0,unfertilized control;(ii)NPK1,100%chemical nitrogen,phosphorus,and potassium fertilizer;(iii)NPKM1,70%chemical NPK fertilizer and 30%organic manure;(iv)NPKM2,50%chemical NPK fertilizer and 50%organic manure;and(v)NPKM3,30%chemical NPK fertilizer and 70%organic manure.Milk vetch and pig manure were sources of manure for early and late rice seasons,respectively.The result showed that SOC content was higher in NPKM1,NPKM2,and NPKM3 treatments than in NPK0 and NPK1 treatments.The carbon sequestration rate increased by 140,160,and 280%under NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK1 treatment.Grain yield was 86.1,93.1,93.6,and 96.5%higher under NPK1,NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK0 treatment.The NUE in NPKM1,NPKM2,and NPKM3 treatments was higher as compared to NPK1 treatment for both rice seasons.Redundancy analysis revealed close positive relationships of CSR with C input,total N,soil C:N ratio,catalase,and humic acids,whereas NUE was closely related to grain yield,grain N content,and phenol oxidase.Furthermore,CSR and NUE negatively correlated with humin acid and soil C:P and N:P ratios.The technique for order of preference by similarity to ideal solution(TOPSIS)showed that NPKM3 treatment was the optimum strategy for improving CSR and NUE.Therefore,substituting 70%of chemical fertilizer with organic manure could be the best management option for increasing CSR and NUE in the paddy fields of southern China.展开更多
[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity...[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity,and yield of purple cabbage(Brassica oleracea var.capita rubra)were investigated in the field base of Institute of Thermal Zone Ecological Agriculture,Yunnan Academy of Agricultural Sciences in Yuanmou County.[Methods]A total of 13 treatments were set up by applying biochar-based organic fertilizer at three levels of 15,30 and 45 t/hm^(2)(T_(1),T_(2),T_(3)),combined with top application of nitrogen fertilizer(urea)at four levels:375(N_1),300(N_(2)),225(N_(3))and 0 kg/hm^(2),with non-fertilizing treatment as control check(CK),in order to explore the optimal ratio for the combined application of biochar-based organic fertilizer with nitrogen fertilizer.[Results]The application of biochar-based organic fertilizer could significantly improve soil nutrients,enzyme activity,and purple cabbage yield.The improvement effect of combined application with nitrogen fertilizer was higher than that of single application of biochar-based organic fertilizer,and the improvement effect was enhanced with the application amount of biochar-based organic fertilizer increasing.The contents of organic matter and total nitrogen were the highest in treatment T_(3)N_(3),of which the values increased by 81.39%and 56.09%compared with the CK,respectively.The contents of soil hydrolyzable nitrogen,available phosphorus,and available potassium were all the highest under treatment T_(3)N_(2),with increases of 92.76%,171.01%and 235.50%,respectively.There was a significant positive correlation between the activity of soil catalase,urease,and sucrase and organic matter,total nitrogen,and available nutrients.The overall soil enzyme activity was relatively higher in treatment T_(3)N_(2).The yield of purple cabbage treated with biochar-based organic fertilizer combined with nitrogen fertilizer could reach 85750 kg/hm^(2),which was 94.78%higher than that treated with biochar-based organic fertilizer alone.Based on comprehensive analysis,the optimal combination ratio was 45 t/hm^(2)of biochar-based organic fertilizer and 300 kg/hm^(2)of urea(T_(3)N_(2)).[Conclusions]This study provides data support for the promotion of biochar-based organic fertilizers and reduced fertilizer in agricultural soil in the Dam area of Yuanmou County.展开更多
The optimized management of crop fertilization is very important for improving crop yield and reducing the consumption of chemical fertilizers.Critical nutrient values can be used for evaluating the nutritional status...The optimized management of crop fertilization is very important for improving crop yield and reducing the consumption of chemical fertilizers.Critical nutrient values can be used for evaluating the nutritional status of a crop,and they reflect the nutrient concentrations above which the plant is sufficiently supplied for achieving the maximum potential yield.Based on on-farm surveys of 504 farmers and 60 field experimental sites in the drylands of China,we proposed a recommended fertilization method to determine nitrogen(N),phosphorus(P),and potassium(K)fertilizer input rates for wheat production,and then validated the method by a field experiment at 66 different sites in northern China.The results showed that wheat grain yield varied from 1.1 to 9.2 t ha^(-1),averaging 4.6 t ha^(-1),and it had a quadratic relationship with the topsoil(0-20 cm)nitrate N and soil available P contents at harvest.However,yield was not correlated with the inputs of N,P,and K fertilizers.Based on the relationship(exponential decay model)between 95–105%of the relative yield and topsoil nitrate N,available P,and available K contents at wheat harvest from 60 field experiments,the topsoil critical nutrient values were determined as 34.6,15.6,and 150 mg kg^(-1)for soil nitrate N,available P,and available K,respectively.Then,based on five groups of relative yield(>125%,115–125%,105–115%,95–105%,and<95%)and the model,the five groups of topsoil critical nutrient levels and fertilization coefficients(Fc)were determined.Finally,we proposed a new method for calculating the recommended fertilizer input rate as:Fr=Gy×Nr×Fc,where Fr is the recommended fertilizer(N/P/K)input rate;Gy is the potential grain yield;Nr is the N(N_(rN)),P(N_(rP)),and K(N_(rK))nutrient requirements for wheat to produce 1,000 kg of grain;and Fc is a coefficient for N(N_c)/P(P_c)/K(K_c)fertilizer.A 2-year validated experiment confirmed that the new method reduced N fertilizer input by 17.5%(38.5 kg N ha^(-1))and P fertilizer input by 43.5%(57.5 kg P_(2)O_(5) ha^(-1))in northern China and did not reduce the wheat yield.This outcome can significantly increase the farmers’benefits(by 7.58%,or 139 US$ha^(-1)).Therefore,this new recommended fertilization method can be used as a tool to guide N,P,and K fertilizer application rates for dryland wheat production.展开更多
Throwing out egg shells without using them depreciates a vital source of calcium. As an egg shell contains twice the amount of calcium a person needs a day, it is considered as the richest source of calcium of natural...Throwing out egg shells without using them depreciates a vital source of calcium. As an egg shell contains twice the amount of calcium a person needs a day, it is considered as the richest source of calcium of natural origin. Egg shells have been traditionally and widely used in medicine, beauty science and food production for decades. In spite of that, there is a lack of new solutions that profoundly study mineral elements and beneficial components contained in egg shells for further usage as a product. Assuming we consume 2 eggs a day, the yearly consumption for a person is 730 eggs. As beneficial component, the egg shell structure and mineral elements, were determined in 3 types of samples (Mongolian eggs, Russian eggs, and iodized eggs) by SEM-EDS (Scanning electron microscopy with energy dispersive spectroscopy), a state-of-the-art research method. Consequently, it was established that egg shells consists of Ca (72.6% - 85.7%), Mg (2.7% - 4.5%), Si (0.3% - 0.6%), P (7.0% - 18.1%), S (0.5% - 2.0%), K (0.4% - 0.9%), I (2.6% - 3.0%), respectively. Additionally, the D3.8 × 120, 250, 500, and 1000 times zoomed images of shell structure (SEM) of each sample were examined, and the results were compared and evaluated. The reverse titration method examination has demonstrated that the calcium carbonate (CaCO<sub>3</sub>) content in egg shells is 91% - 92.5%, and pH is 8.41 - 8.75. Ultimately, fertilizer containing 97.7% Ca without chemical additives has been extracted by grounding the eggshells to 4.4 μm, then preparing the mixture at the rate of 20:0.5 (shell: mix, enriched with mandarin and lemon peel) and adjusting its pH to 7.5 - 8.0. Further research on the impact of fertilizer on growing process of indoor flowers has been commenced.展开更多
Nitrogen(N)fertilization affects grain quality in common buckwheat(Fagopyrum esculentum Moench).But the effects of N fertilizer on various buckwheat protein parameters are not fully understood.This study aimed to inve...Nitrogen(N)fertilization affects grain quality in common buckwheat(Fagopyrum esculentum Moench).But the effects of N fertilizer on various buckwheat protein parameters are not fully understood.This study aimed to investigate the synthesis,accumulation,and quality of buckwheat protein under four N application rates in the Loess Plateau,China.Optimal N application(180 kg N ha-1)improved yield,agronomic traits,and N transport and increased protein yield and protein component accumulation.Prolamin and glutelin accumulation first increased and then decreased with increasing N application.The relationships between the contents of protein components and the amount of applied N generally followed quadratic functions.Nitrate reductase and glutamine synthetase activities first increased and then decreased with increasing N levels.Optimal N fertilizer increased the waterholding capacity and thermal stability of buckwheat protein and reduced its emulsification capacity,but negligibly changed its oil-absorption capacity.Hydrophobic amino acids and glutelin content were the main factors affecting protein quality.展开更多
The relationship between the fate of nitrogen (N) fertilizer and the N application rate in paddy fields in Northeast China is unclear,as is the fate of residual N.To clarify these issues,paddy field and15N microplot e...The relationship between the fate of nitrogen (N) fertilizer and the N application rate in paddy fields in Northeast China is unclear,as is the fate of residual N.To clarify these issues,paddy field and15N microplot experiments were carried out in 2017 and 2018,with N applications at five levels:0,75,105,135 and 165 kg N ha–1(N0,N75,N105,N135 and N165,respectively).15N-labeled urea was applied to the microplots in 2017,and the same amount of unlabeled urea was applied in 2018.Ammonia (NH3) volatilization,leaching,surface runoff,rice yield,the N contents and15N abundances of both plants and soil were analyzed.The results indicated a linear platform model for rice yield and the application rate of N fertilizer,and the optimal rate was 135 kg N ha–1.N uptake increased with an increasing N rate,and the recovery efficiency of applied N (REN) values of the difference subtraction method were 45.23 and 56.98%on average in 2017and 2018,respectively.The RENwas the highest at the N rate of 135 kg ha–1in 2017 and it was insignificantly affected by the N application rate in 2018,while the agronomic efficiency of applied N (AEN) and physiological efficiency of applied N (PEN) decreased significantly when excessive N was applied.N loss through NH3volatilization,leaching and surface runoff was low in the paddy fields in Northeast China.NH3volatilization accounted for 0.81 and 2.99%of the total N application in 2017 and 2018,respectively.On average,the leaching and surface runoff rates were 4.45% and less than 1.05%,respectively,but the apparent denitrification loss was approximately 42.63%.The residual N fertilizer in the soil layer (0–40 cm) was 18.37–31.81 kg N ha–1in 2017,and the residual rate was 19.28–24.50%.Residual15N from fertilizer in the soil increased significantly with increasing N fertilizer,which was mainly concentrated in the 0–10 cm soil layer,accounting for 58.45–83.54% of the total residual N,and decreased with increasing depth.While the ratio of residual N in the 0–10 cm soil layer to that in the 0–40 cm soil layer was decreased with increasing N application.Furthermore,of the residual N,approximately 5.4%was taken up on average in the following season and 50.2%was lost,but 44.4%remained in the soil.Hence,the amount of applied N fertilizer should be reduced appropriately due to the high residual N in paddy fields in Northeast China.The appropriate N fertilizer rate in the northern fields in China was determined to be 105–135 kg N ha–1in order to achieve a balance between rice yield and high N fertilizer uptake.展开更多
Field experiments were carried out on roselle (Hibiscus sabdariffa L) during the 2019 and 2020 cropping seasons at the CSIR-SARI Research Station at Manga in the Upper East Region of Ghana. The aim of the experiment w...Field experiments were carried out on roselle (Hibiscus sabdariffa L) during the 2019 and 2020 cropping seasons at the CSIR-SARI Research Station at Manga in the Upper East Region of Ghana. The aim of the experiment was to study the response of roselle to cowdung, nitrogen fertilizer and their interaction on the growth and yield of roselle. The treatments consisted of factorial combination of five rates of cowdung (0, 1.5, 2.5, 3.5 and 4.5 t/ha) and five levels of nitrogen (0, 20, 40, 60 and 80 kgN/ha) laid out in a randomized complete block design and replicated three times. Data were collected on days to 50% flowering, plant height, number of leaves per plant and dry calyx yield. The results indicated that differences in dry calyx yield due to the manure and nitrogen fertilizer effects were highly significant (P 0.01). Application rate of 2.5 t/ha manure recorded the highest yield of 340 kg/ha and 308.1 kg/ha in 2019 and 2020 respectively. Increasing manure rate from 2.5 - 3.5 t/ha did not result in significant increases in dry calyx yield. The four rates differed significantly from the control which had the least calyx yield of 190.3 kg/ha and 180 kg/ha in 2019 and 2020 respectively. Nitrogen rate of 60 kg/ha recorded the highest dry calyx yield of 510.5 kg/ha and 370.4 kg/ha in 2019 and 2020 respectively which were significantly different from calyx yields recorded by other treatments. The trend on partial budget analysis was consistent in both seasons with the highest yielding treatments (2.5 t/ha cowdung manure and 60 kg/ha) recording the highest net benefit while the control (0 kg/ha) ranked last. The application rate of 2.5 t/ha of cowdung and 60 kg/ha of Nitrogen is thus recommended for optimum roselle production and productivity in the study area.展开更多
In recent years,in order to improve nutrient use efficiency,especially nitrogen use efficiency,fertilizer valueadded technology has been developed rapidly.However,the mechanism of the effect of synergistic fertilizer ...In recent years,in order to improve nutrient use efficiency,especially nitrogen use efficiency,fertilizer valueadded technology has been developed rapidly.However,the mechanism of the effect of synergistic fertilizer on plant nitrogen utilization is not clear.A study was,therefore,conducted to explore the activities and gene expression of key enzymes for nitrogen assimilation and the gene expression of nitrogen transporters in wheat after the application of synergistic fertilizer.Soil column experiment was set up in Qingdao Agricultural University experimental base from October 2018 to June 2019.Maleic acid and itaconic acid were copolymerized with acrylic acid as cross-linking monomer to make a fluid gel,which was sprayed on the fertilizer surface to make nitrogen and phosphorus synergistic fertilizer.A total of 6 treatments was set according to different nitrogen and phosphorus fertilizer ratios:(1)100%common nitrogen fertilizer+100%common phosphate fertilizer(2)70%nitrogen synergistic fertilizer+100%phosphorus synergistic fertilizer;(3)100%nitrogen synergistic fertilizer+70%phosphorus synergistic fertilizer;(4)100%nitrogen synergistic fertilizer+100%phosphorus synergistic fertilizer;(5)70%nitrogen synergistic fertilizer+70%phosphorus synergistic fertilizer;(6)100%commercial nitrogen synergistic fertilizer+100%commercial phosphorus synergistic fertilizer.The results are as follows:(1)the enzyme activities of wheat plants under synergistic fertilizer condition were higher than those under ordinary fertilizer,except under the treatment that nitrogen and phosphorus synergistic fertilizer were both reduced;(2)the expression level of the genes under the treatment“100%nitrogen synergistic fertilizer+100%phosphorus synergistic fertilizer”was significantly higher than those in other treatments.Combined with the higher performance of nitrogen concentration in various parts of the plant under the condition of applying synergistic fertilizer,this study indicated that the application of synergistic fertilizer can improve the nitrogen metabolism of the plant by increasing the nitrogen level in the rhizosphere soil,inducing the expression of nitrogen transporter genes and key assimilation enzymes genes.展开更多
The utilization of aquaculture wastewater as irrigation is an effective way to recycle and reuse water and nitrogen fertilizer resources because it contains numerous nutrients.However,it is still unclear that the patt...The utilization of aquaculture wastewater as irrigation is an effective way to recycle and reuse water and nitrogen fertilizer resources because it contains numerous nutrients.However,it is still unclear that the pattern of substituting aquaculture wastewater irrigation for fertilizer supplementing is conducive to improving the soil nitrogen status,fruit yield and water-fertilizer use efficiency for tomato production.In this context,the experiment was intended to establish the appropriate irrigation regime of aquaculture wastewater in tomato production for freshwater replacement and fertilizer reduction to ensure good yields.Pot experiments were conducted with treatments as farmers accustomed to irrigation and fertilization used as control(CK),1.75 L aquaculture wastewater with base fertilizer(W1),2 L aquaculture wastewater with base fertilizer;and 2.25 L aquaculture wastewater with base fertilizer(W3).We examined the effects of aquaculture wastewater irrigation on soil nitrogen distribution,Nrelated hydrolases,tomato yield,and economic benefits.The results showed that the control treatment had the highest N input,about 24.68%higher than the W3 treatment,while the yield was only about 7.81%higher than W3.This indicated that the overuse of chemical fertilizer was present in the current tomato production.Although the reduction of fertilizer in aquaculture wastewater irrigation caused a decrease in tomato production,this economic loss can be compensated by cost savings in the wastewater disposal.Among aquaculture wastewater treatments,the W3 treatment had the highest overall benefit,achieving 62.63%freshwater savings,37.50%fertilizer input reduction,and an economic return of approximately 19,466 Yuan per hectare higher than the control.Additionally,increasing the irrigation volume of aquaculture wastewater could provide more available nutrients to the soil,which were more prevalent in the form of organic nitrogen.The lower soil nitrate reductase activities(NR)under aquaculture wastewater treatments after harvesting also proved that this pattern was beneficial to reduce soil nitrate nitrogen residues.Overall,the results demonstrate that aquaculture wastewater irrigation alleviates the soil nitrate residues,improves nutrient availability,and results in more economic returns with water and fertilizer conservation for the greenhouse production of tomatoes.展开更多
This paper summarized the requirements of organic agriculture for soil environment,fertilizer application and irrigation water quality,put forward safeguard measures for organic agriculture in terms of soil,fertilizer...This paper summarized the requirements of organic agriculture for soil environment,fertilizer application and irrigation water quality,put forward safeguard measures for organic agriculture in terms of soil,fertilizer and water,and finally came up with recommendations for strengthening the use of soil fertilizers in organic agriculture.展开更多
As part of the promotion of common bean cultivation, fertilization methods will have to be proposed to growers. The aim of this study is therefore to develop a technical itinerary for dry bean fertilization. To this e...As part of the promotion of common bean cultivation, fertilization methods will have to be proposed to growers. The aim of this study is therefore to develop a technical itinerary for dry bean fertilization. To this end, different types of chemical and organic fertilizers were evaluated on three dry bean varieties (HARI25/GHA19, HARI35/GHA19 and HARI36/GUI21). Seven (7) doses of chemical and organic fertilizers were used, including two controls (D0 with no fertilizer and D1, the reference dose using NPK base and cover fertilizers in the form of urea). The fertilization trial was set up as a Split-Plot design, with variety as the primary factor and dose as the secondary factor. The experiment was repeated three (3) times. The results showed that vegetative development parameters and fruit set rate varied according to the variety studied. For yield and its components, the treatments had a significant effect. Indeed, the response of varieties to fertilizers was specific. For each variety used, the optimum yield was obtained with a different treatment, thus highlighting the genotype effect of the dry bean varieties studied. Among the treatments tested, D4 (5 t organic fertilizer/ha) performed best in all three varieties, generating yield increases of 20%, 46% and 91% respectively.展开更多
Worldwide, the demand for agro-organic foods that are healthy, nutritious, and environmentally friendly is increasing dramatically across all nations among consumers. Tomatoes being one of the dietary requirements in ...Worldwide, the demand for agro-organic foods that are healthy, nutritious, and environmentally friendly is increasing dramatically across all nations among consumers. Tomatoes being one of the dietary requirements in almost every meal is not exceptional and its availability in the market all year round is very important to farmers as well as consumers because it is highly demanded as a vegetable par excellence;which is either eaten raw in salads, cooked or processed into liquid ingredients. This study investigates the impact of chicken, goat, and cow manure treatments on tomato plant growth response to height, leaf length, and width, as well as fruit yield. The experimental field trials were conducted over two planting seasons in Mundri West County. It followed a Complete Randomized Design (CRD) approach, consisting of four blocks. Each block contained three treatments replicated four times and a control group. The data of measured parameters from all 16 plots were subjected to one-way Analysis of Variance (ANOVA) using the Gen Stat 14th Edition software. The findings indicate significant differences (P < 0.05) among all the different organic manure applications on tomato plant growth parameters compared to the control group. Chicken manure resulted in the tallest tomato plants (30.1 and 37.9 cm), longest leaves (9.9 and 10.4 cm), and widest leaves (2.1 and 2.5 cm) in both seasons respectively. The study showed plots treated with chicken manure had a highly significant impact (P < 0.05) on the prevalence of aphids (1.0) and white flies (1.4) with the lowest value compared to those with cow and goat manure applied. Additionally, chicken manure led to the highest yields (39.30 and 49.49 tons/ha) in both seasons. Based on these findings, it can be concluded that using chicken manure effectively improves the performance of Rio Grande Tomatoes, and thus, farmers are encouraged to utilize chicken manure to maximize their tomato yields.展开更多
Local knowledge has an important role in agricultural practices.This study aims to describe the local knowledge of farming communities about the use of organic fertilizers as a strategy to increase cashew production i...Local knowledge has an important role in agricultural practices.This study aims to describe the local knowledge of farming communities about the use of organic fertilizers as a strategy to increase cashew production in Buton Utara Regency,Southeast Celebes,Indonesia.The research method used is a qualitative approach with data collection techniques using in-depth interviews and observation.The research results showed that the farming community in this area has in-depth local knowledge of how to make and apply effective organic fertilizers sourced from the surrounding natural environment.However,there are challenges in access to the organic materials needed and constraints in the widespread implementation of organic fertilizers.This study recommends strengthening education and training programs to increase farmers’awareness and skills in using organic fertilizers.展开更多
基金financially supported by the HAAFS Science and Technology Innovation Special Project China(2022KJCXZX-LYS-9)the Natural Science Foundation of Hebei Province China(C2021301004)the Key Research and Dvelopment Program of Hebei Province China(20326401D)。
文摘Adjusting agronomic measures to alleviate the kernel position effect in maize is important for ensuring high yields.In order to clarify whether the combined application of organic fertilizer and chemical fertilizer(CAOFCF)can alleviate the kernel position effect of summer maize,field experiments were conducted during the 2019 and 2020 growing seasons,and five treatments were assessed:CF,100%chemical fertilizer;OFCF1,15%organic fertilizer+85%chemical fertilizer;OFCF2,30%organic fertilizer+70%chemical fertilizer;OFCF3,45%organic fertilizer+55%chemical fertilizer;and OFCF4,60%organic fertilizer+40%chemical fertilizer.Compared with the CF treatment,the OFCF1 and OFCF2 treatments significantly alleviated the kernel position effect by increasing the weight ratio of inferior kernels to superior kernels and reducing the weight gap between the superior and inferior kernels.These effects were largely due to the improved filling and starch accumulation of inferior kernels.However,there were no obvious differences in the kernel position effect among plants treated with CF,OFCF3,or OFCF4 in most cases.Leaf area indexes,post-silking photosynthetic rates,and net assimilation rates were higher in plants treated with OFCF1 or OFCF2 than in those treated with CF,reflecting an enhanced photosynthetic capacity and improved postsilking dry matter accumulation(DMA)in the plants treated with OFCF1 or OFCF2.Compared with the CF treatment,the OFCF1 and OFCF2 treatments increased post-silking N uptake by 66.3 and 75.5%,respectively,which was the major factor driving post-silking photosynthetic capacity and DMA.Moreover,the increases in root DMA and zeatin riboside content observed following the OFCF1 and OFCF2 treatments resulted in reduced root senescence,which is associated with an increased post-silking N uptake.Analyses showed that post-silking N uptake,DMA,and grain yield in summer maize were negatively correlated with the kernel position effect.In conclusion,the combined application of 15-30%organic fertilizer and 70-85%chemical fertilizer alleviated the kernel position effect in summer maize by improving post-silking N uptake and DMA.These results provide new insights into how CAOFCF can be used to improve maize productivity.
基金supported by The Open Project of State Key Laboratory of Plateau Ecology and Agriculture,Qinghai University(2020-KF-001)the Grand S&T Project of Qinghai Province(2019-NK-A11)the Key R&D Project of Qinghai Province(2018-NK-128).
文摘Excessive amounts of nitrogen(N)fertilizers are applied during wolfberry production,resulting in some soil problems as well as potential environmental risks in the Qinghai-Tibet Plateau.In this study,organic fertilizers were used to replace part of the N fertilizer in wolfberry fields with different fertility levels.N fertilizer rates had 0,50,100,150,200,and 250 g N/plant.Organic fertilizer rates had 0,2,4,6,8,and 10 kg organic fertilizer/plant.The experimental treatments included 6 combinations of N0M10,N50M8,N100M6,N150M4,N200M2,and control was N250M0.The results showed that in the high-fertility soils,combinations of N150M4,N100M6 and N50M8 treatments were increased in yields,fruit shape index,flavonoid content,total phenol content,mineral nutrient content,and antioxidant activity of wolfberry fruits.Also they were improved in soil fertility and decreased in residual nitrate through the soil depth of 0-300 cm.In the soil with less fertility,fruit yield,amino acid contents,flavonoids,total phenols,mineral nutrients and antioxidant activity of fruits were increased by the N200M2,N150M4 and N100M6 treatments and soil fertility was improved as well.Also more residual nitrate was found in the depth of 0-100 cm of soil with both chemical and organic fertilizer compared with the control.Therefore,in the Qinghai-Tibet Plateau,combining decreased N fertilizer with organic fertilizer rather than chemical fertilizer alone could help farmers achieve satisfactory yields and quality of wolfberry fruits and reduce the risk of nitrate leaching.In conclusion,50-150 g/plant of N fertilizer combined with 4-8 kg/plant of organic fertilizer in high-fertility gardens and 100-200 g/plant of N fertilizer combined with 2-6 kg/plant of organic fertilizer in low-fertility gardens are recommended for wolfberry cultivation.
基金supported by the National Natural Science Foundation of China(32060430 and 31971840)the Research Initiation Fund of Hainan University,China(KYQD(ZR)19104)。
文摘Colored rice is a type of high-quality,high-added-value rice that has attracted increasing attention in recent years.The use of large amounts of inorganic nitrogen fertilizer in rice fields results in low fertilizer use efficiency and high environmental pollution.Organic fertilizer is a promising way to improve soil quality and sustain high yields.However,most studies focus on the effect of animal-based organic fertilizers.The effects of different ratios of plantbased organic fertilizer and inorganic fertilizer on the grain yield and quality of colored rice have rarely been reported.Therefore,a two-year field experiment was conducted in 2020 and 2021 to study the effects of replacing inorganic N fertilizers with plant-based organic fertilizers on the yield,nitrogen use efficiency(NUE),and anthocyanin content of two colored rice varieties in a tropical region in China.The experimental treatments included no nitrogen fertilization(T1),100% inorganic nitrogen fertilizer(T2),30%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T3),60%inorganic nitrogen fertilizer substitution with plant-based organic fertilizer(T4),and 100% plantbased organic fertilizer(T5).The total nitrogen provided to all the treatments except T1 was the same at 120 kg ha-1.Our results showed that the T3 treatment enhanced the grain yield and anthocyanin content of colored rice by increasing nitrogen use efficiency compared with T2.On average,grain yields were increased by 9 and 8%,while the anthocyanin content increased by 16 and 10% in the two colored rice varieties under T3 across the two years,respectively,as compared with T2.Further study of the residual effect of partial substitution of inorganic fertilizers showed that the substitution of inorganic fertilizer with plant-based organic fertilizer improved the soil physiochemical properties,and thus increased the rice grain yield,in the subsequent seasons.The highest grain yield of the subsequent rice crop was observed under the T5 treatment.Our results suggested that the application of plantbased organic fertilizers can sustain the production of colored rice with high anthocyanin content in tropical regions,which is beneficial in reconciling the relationship between rice production and environmental protection.
基金funded by the Fund Projects of the Central Government in Guidance of Local Science and Technology Development(GuiKeZY22096020)Guangxi Key R&D Plan Project(2023AB23078)+1 种基金National Natural Science Foundation of China(82260750)Appropriate Technology Development and Promotion Project of Guangxi Traditional Chinese Medicine Administration(GZSY23-07).
文摘To explore the effect of fertilizers on the yield and quality of Platostoma palustre,in this study,P.palustre was utilized as the research material,and field experiments were conducted with different application rates of compound fertilizer and organic fertilizer and non-targeted metabolomics analysis was further employed to compare and analyze the differences in the metabolic components between the compound fertilizer and organic fertilizer treatments.The results of field experiments demonstrated that both compound and organic fertilizers could promote the fresh weight,shade dry weight,and dry weight of P.palustre,with 450 kg hm−2 compound fertilizer and 4500 kg hm−2 organic fertilizer presenting the optimum effects.Non-targeted metabolomics revealed that 1096 metabolites were identified in 450 kg hm−2 compound fertilizer and 4500 kg hm−2 organic fertilizer,and 885 metabolites were annotated in the Human Metabolome Database(HMDB).There were 318 differential metabolites(DMs)found between the two treatments,and 263 metabolites were annotated in HMDB.The abundance of 2 phenolic compounds and 12 organic oxygen compounds in the treatment of 4500 kg hm−2 organic fertilizer was significantly higher than that of the 450 kg hm−2 compound fertilizer,while the abundance of 21 organic oxygen compounds,14 flavonoids,3 phenolic compounds,and 5 cinnamic acids and their derivatives was significantly up-regulated in 450 kg hm−2 compound fertilizer treatment.In addition,5 metabolic pathways were significantly enriched,and the flavone and flavonol biosynthesis was the most significantly differential metabolic pathway.These results suggested that the application of both compound fertilizers and organic fertilizers can increase the yield of P.palustre,but their effects on metabolites were different.This study has considerable implications for the planting and cultivation of P.palustre,furnishing a scientific foundation for an efficient and rational application of fertilizer.
基金supported by the National Key Research and Development Program of China(2022YFD2300300)the National Natural Science Foundation of China(41907072)+1 种基金the Scientific Research Foundation of Zhejiang A&F University,China(2022LFR003)the Jiangsu Agriculture Science and Technology Innovation Fund,China(CX(21)3007).
文摘Water-saving irrigation strategies can successfully alleviate methane emissions from rice fields,but significantly stimulate nitrous oxide(N_(2)O)emissions because of variations in soil oxygen level and redox potential.However,the relationship linking soil N_(2)O emissions to nitrogen functional genes during various fertilization treatments in water-saving paddy fields has rarely been investigated.Furthermore,the mitigation potential of organic fertilizer substitution on N_(2)O emissions and the microbial mechanism in rice fields must be further elucidated.Our study examined how soil N_(2)O emissions were affected by related functional microorganisms(ammonia-oxidizing archaea(AOA),ammonia-oxidizing bacteria(AOB),nirS,nirK and nosZ)to various fertilization treatments in a rice field in southeast China over two years.In this study,three fertilization regimes were applied to rice cultivation:a no nitrogen(N)(Control),an inorganic N(Ni),and an inorganic N with partial N substitution with organic manure(N_(i)+N_(o)).Over two rice-growing seasons,cumulative N_(2)O emissions averaged 0.47,4.62 and 4.08 kg ha^(−1)for the Control,Ni and N_(i)+N_(o)treatments,respectively.In comparison to the Ni treatment,the N_(i)+N_(o)fertilization regime considerably reduced soil N_(2)O emissions by 11.6%while maintaining rice yield,with a lower N_(2)O emission factor(EF)from fertilizer N of 0.95%.Nitrogen fertilization considerably raised the AOB,nirS,nirK and nosZ gene abundances,in comparison to the Control treatment.Moreover,the substitution of organic manure for inorganic N fertilizer significantly decreased AOB and nirS gene abundances and increased nosZ gene abundance.The AOB responded to N fertilization more sensitively than the AOA.Total N_(2)O emissions significantly correlated positively with AOB and nirS gene abundances while having a negative correlation with nosZ gene abundance and the nosZ/nirS ratio across N-fertilized plots.In summary,we conclude that organic manure substitution for inorganic N fertilizer decreased soil N_(2)O emissions primarily by changing the soil NO_(3)^(−)-N,pH and DOC levels,thus inhibiting the activities of ammonia oxidation in nitrification and nitrite reduction in denitrification,and strengthening N_(2)O reduction in denitrification from water-saving rice paddies.
文摘The presence of acidic soil in rural areas poses difficulties for agricultural production.One factor regulating soil pH is the overuse of inorganic fertilizer.The increased use of fertilizers in soybean production not only raises sustainability concerns but also contributes to soil acidity.Therefore,the use of organic fertilizer could offer a solution for addressing both issues related to soil acidity and sustainability.The purpose of this study was to investigate the manipulation of soil pH using organic fertilizer for soybean production under acidic stress.The planting medium,consisting of a mixture of topsoil,rice husk charcoal,and organic fertilizer(in a ratio of 2:1:1),was supplemented with 0.5 g of NPK fertilizer as a basal treatment in each planting medium.To regulate the soil acidity to pH 4,we added FeSO_(4) and allowed the mixture to incubate for 30 days.The results demonstrate that the application of three types of organic fertilizers chicken manure(P1),oil palm empty bunch fertilizer(P2),and vermicompost(P3)positively impacts the growth of three soybean varieties.The findings indicate that the application of P2 organic fertilizer can increase vegetative growth almost 50%in soybeans on acidic soil,including plant height,leaf count,and root length.Meanwhile,applying P3 organic fertilizer can boost reproductive growth responses in soybeans on acidic soil,such as pod number(from around 0-4 unit to 42-51 unit),grain number(from around 0-5 unit to 88-90 unit),and grain weight(from around 0-0.37 g to 12-25 g).Organic fertilizer has the potential to regulate soil pH,promoting higher yields of soybeans under acidic stress.
基金Supported by National Key Research and Development Program of China(2017FYD0101406)Zhoukou Comprehensive Test Station of Henan Provincial Corn Industry Technology System(HARS-22-02-Z5)。
文摘[Objectives] This study was conducted to verify the field application effect of slow-release nitrogen fertilizer on summer maize in Shajiang black soil area by simultaneous sowing and fertilization, and explore the application scope and nitrogen metabolism mechanism, so as to lay a foundation for fertilizer reduction and efficiency improvement. [Methods] With maize variety Beiqing 340 and sulfur-coated urea as experimental materials, five nitrogen application levels were set, namely, control (C0), slow-release nitrogen 70 kg/hm^(2) (C70), slow-release nitrogen 140 kg/hm^(2) (C140), slow-release nitrogen 210 kg/hm^(2) (C210) and slow-release nitrogen 280 kg/hm^(2) (C280). The phosphorus and potassium fertilizers were all in accordance with the unified standard. [Results] With the application rate of slow-release nitrogen increasing, the nitrogen accumulation in organs increased first and then decreased after tasseling stage of maize. In order to reduce the fertilizing amount and increase efficiency, 210 kg/hm^(2) of slow-release nitrogen fertilizer was the best fertilizing amount for summer maize in Shajiang black soil area. [Conclusions] This study provides reference for fertilizer reduction, efficiency improvement and sustainable development of summer maize in Shajiang black soil area.
基金supported by the National Natural Science Foundation of China (41671301)the National Key Research and Development Program of China (2016YFD0300901)the Central Public-interest Scientific Institution Basal Research Fund, China (GY2022-13-5, G2022-02-2, G2022-02-3 and G2022-02-10)
文摘Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical fertilizer with organic manure affects rice yield,carbon sequestration rate(CSR),and nitrogen use efficiency(NUE)while ensuring environmental safety remains unclear.This study assessed the long-term effect of substituting chemical fertilizer with organic manure on rice yield,CSR,and NUE.It also determined the optimum substitution ratio in the acidic soil of southern China.The treatments were:(i)NPK0,unfertilized control;(ii)NPK1,100%chemical nitrogen,phosphorus,and potassium fertilizer;(iii)NPKM1,70%chemical NPK fertilizer and 30%organic manure;(iv)NPKM2,50%chemical NPK fertilizer and 50%organic manure;and(v)NPKM3,30%chemical NPK fertilizer and 70%organic manure.Milk vetch and pig manure were sources of manure for early and late rice seasons,respectively.The result showed that SOC content was higher in NPKM1,NPKM2,and NPKM3 treatments than in NPK0 and NPK1 treatments.The carbon sequestration rate increased by 140,160,and 280%under NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK1 treatment.Grain yield was 86.1,93.1,93.6,and 96.5%higher under NPK1,NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK0 treatment.The NUE in NPKM1,NPKM2,and NPKM3 treatments was higher as compared to NPK1 treatment for both rice seasons.Redundancy analysis revealed close positive relationships of CSR with C input,total N,soil C:N ratio,catalase,and humic acids,whereas NUE was closely related to grain yield,grain N content,and phenol oxidase.Furthermore,CSR and NUE negatively correlated with humin acid and soil C:P and N:P ratios.The technique for order of preference by similarity to ideal solution(TOPSIS)showed that NPKM3 treatment was the optimum strategy for improving CSR and NUE.Therefore,substituting 70%of chemical fertilizer with organic manure could be the best management option for increasing CSR and NUE in the paddy fields of southern China.
基金Supported by Key R&D Program of the Ministry of Science and Technology of China(2017YFC0505102-4)。
文摘[Objectives]In response to the issue of soil improvement in Yuanmou County,the effects of combined application of biochar-based organic fertilizer and reduced nitrogen fertilizer on soil nutrients,soil enzyme activity,and yield of purple cabbage(Brassica oleracea var.capita rubra)were investigated in the field base of Institute of Thermal Zone Ecological Agriculture,Yunnan Academy of Agricultural Sciences in Yuanmou County.[Methods]A total of 13 treatments were set up by applying biochar-based organic fertilizer at three levels of 15,30 and 45 t/hm^(2)(T_(1),T_(2),T_(3)),combined with top application of nitrogen fertilizer(urea)at four levels:375(N_1),300(N_(2)),225(N_(3))and 0 kg/hm^(2),with non-fertilizing treatment as control check(CK),in order to explore the optimal ratio for the combined application of biochar-based organic fertilizer with nitrogen fertilizer.[Results]The application of biochar-based organic fertilizer could significantly improve soil nutrients,enzyme activity,and purple cabbage yield.The improvement effect of combined application with nitrogen fertilizer was higher than that of single application of biochar-based organic fertilizer,and the improvement effect was enhanced with the application amount of biochar-based organic fertilizer increasing.The contents of organic matter and total nitrogen were the highest in treatment T_(3)N_(3),of which the values increased by 81.39%and 56.09%compared with the CK,respectively.The contents of soil hydrolyzable nitrogen,available phosphorus,and available potassium were all the highest under treatment T_(3)N_(2),with increases of 92.76%,171.01%and 235.50%,respectively.There was a significant positive correlation between the activity of soil catalase,urease,and sucrase and organic matter,total nitrogen,and available nutrients.The overall soil enzyme activity was relatively higher in treatment T_(3)N_(2).The yield of purple cabbage treated with biochar-based organic fertilizer combined with nitrogen fertilizer could reach 85750 kg/hm^(2),which was 94.78%higher than that treated with biochar-based organic fertilizer alone.Based on comprehensive analysis,the optimal combination ratio was 45 t/hm^(2)of biochar-based organic fertilizer and 300 kg/hm^(2)of urea(T_(3)N_(2)).[Conclusions]This study provides data support for the promotion of biochar-based organic fertilizers and reduced fertilizer in agricultural soil in the Dam area of Yuanmou County.
基金supported by grants from the National Key Research and Development Program of China(2021YFD1900700 and 2018YFD0200401)the China Agricultural Research System(CARS-3)the Science and Technology Research Program of Shaanxi Province,China(2022PT-06)。
文摘The optimized management of crop fertilization is very important for improving crop yield and reducing the consumption of chemical fertilizers.Critical nutrient values can be used for evaluating the nutritional status of a crop,and they reflect the nutrient concentrations above which the plant is sufficiently supplied for achieving the maximum potential yield.Based on on-farm surveys of 504 farmers and 60 field experimental sites in the drylands of China,we proposed a recommended fertilization method to determine nitrogen(N),phosphorus(P),and potassium(K)fertilizer input rates for wheat production,and then validated the method by a field experiment at 66 different sites in northern China.The results showed that wheat grain yield varied from 1.1 to 9.2 t ha^(-1),averaging 4.6 t ha^(-1),and it had a quadratic relationship with the topsoil(0-20 cm)nitrate N and soil available P contents at harvest.However,yield was not correlated with the inputs of N,P,and K fertilizers.Based on the relationship(exponential decay model)between 95–105%of the relative yield and topsoil nitrate N,available P,and available K contents at wheat harvest from 60 field experiments,the topsoil critical nutrient values were determined as 34.6,15.6,and 150 mg kg^(-1)for soil nitrate N,available P,and available K,respectively.Then,based on five groups of relative yield(>125%,115–125%,105–115%,95–105%,and<95%)and the model,the five groups of topsoil critical nutrient levels and fertilization coefficients(Fc)were determined.Finally,we proposed a new method for calculating the recommended fertilizer input rate as:Fr=Gy×Nr×Fc,where Fr is the recommended fertilizer(N/P/K)input rate;Gy is the potential grain yield;Nr is the N(N_(rN)),P(N_(rP)),and K(N_(rK))nutrient requirements for wheat to produce 1,000 kg of grain;and Fc is a coefficient for N(N_c)/P(P_c)/K(K_c)fertilizer.A 2-year validated experiment confirmed that the new method reduced N fertilizer input by 17.5%(38.5 kg N ha^(-1))and P fertilizer input by 43.5%(57.5 kg P_(2)O_(5) ha^(-1))in northern China and did not reduce the wheat yield.This outcome can significantly increase the farmers’benefits(by 7.58%,or 139 US$ha^(-1)).Therefore,this new recommended fertilization method can be used as a tool to guide N,P,and K fertilizer application rates for dryland wheat production.
文摘Throwing out egg shells without using them depreciates a vital source of calcium. As an egg shell contains twice the amount of calcium a person needs a day, it is considered as the richest source of calcium of natural origin. Egg shells have been traditionally and widely used in medicine, beauty science and food production for decades. In spite of that, there is a lack of new solutions that profoundly study mineral elements and beneficial components contained in egg shells for further usage as a product. Assuming we consume 2 eggs a day, the yearly consumption for a person is 730 eggs. As beneficial component, the egg shell structure and mineral elements, were determined in 3 types of samples (Mongolian eggs, Russian eggs, and iodized eggs) by SEM-EDS (Scanning electron microscopy with energy dispersive spectroscopy), a state-of-the-art research method. Consequently, it was established that egg shells consists of Ca (72.6% - 85.7%), Mg (2.7% - 4.5%), Si (0.3% - 0.6%), P (7.0% - 18.1%), S (0.5% - 2.0%), K (0.4% - 0.9%), I (2.6% - 3.0%), respectively. Additionally, the D3.8 × 120, 250, 500, and 1000 times zoomed images of shell structure (SEM) of each sample were examined, and the results were compared and evaluated. The reverse titration method examination has demonstrated that the calcium carbonate (CaCO<sub>3</sub>) content in egg shells is 91% - 92.5%, and pH is 8.41 - 8.75. Ultimately, fertilizer containing 97.7% Ca without chemical additives has been extracted by grounding the eggshells to 4.4 μm, then preparing the mixture at the rate of 20:0.5 (shell: mix, enriched with mandarin and lemon peel) and adjusting its pH to 7.5 - 8.0. Further research on the impact of fertilizer on growing process of indoor flowers has been commenced.
基金supported by the National Key Research and Development Program of China(2020YFD1000805-03)National Natural Science Foundation of China(31671631)。
文摘Nitrogen(N)fertilization affects grain quality in common buckwheat(Fagopyrum esculentum Moench).But the effects of N fertilizer on various buckwheat protein parameters are not fully understood.This study aimed to investigate the synthesis,accumulation,and quality of buckwheat protein under four N application rates in the Loess Plateau,China.Optimal N application(180 kg N ha-1)improved yield,agronomic traits,and N transport and increased protein yield and protein component accumulation.Prolamin and glutelin accumulation first increased and then decreased with increasing N application.The relationships between the contents of protein components and the amount of applied N generally followed quadratic functions.Nitrate reductase and glutamine synthetase activities first increased and then decreased with increasing N levels.Optimal N fertilizer increased the waterholding capacity and thermal stability of buckwheat protein and reduced its emulsification capacity,but negligibly changed its oil-absorption capacity.Hydrophobic amino acids and glutelin content were the main factors affecting protein quality.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28100302)the earmarked fund for China Agriculture Research System (CARS-01-29)+2 种基金the National Key Research and Development Program of China(2017YFD0200104)the Fifth (2019) of ‘Young Talents’ Project of Northeast Agricultural University,Chinathe Open Program of Key Laboratory of Germplasm Enhancement,Physiology and Ecology of Food Crops in Cold Region,Ministry of Education,Northeast Agricultural University (CXSTOP2021009)。
文摘The relationship between the fate of nitrogen (N) fertilizer and the N application rate in paddy fields in Northeast China is unclear,as is the fate of residual N.To clarify these issues,paddy field and15N microplot experiments were carried out in 2017 and 2018,with N applications at five levels:0,75,105,135 and 165 kg N ha–1(N0,N75,N105,N135 and N165,respectively).15N-labeled urea was applied to the microplots in 2017,and the same amount of unlabeled urea was applied in 2018.Ammonia (NH3) volatilization,leaching,surface runoff,rice yield,the N contents and15N abundances of both plants and soil were analyzed.The results indicated a linear platform model for rice yield and the application rate of N fertilizer,and the optimal rate was 135 kg N ha–1.N uptake increased with an increasing N rate,and the recovery efficiency of applied N (REN) values of the difference subtraction method were 45.23 and 56.98%on average in 2017and 2018,respectively.The RENwas the highest at the N rate of 135 kg ha–1in 2017 and it was insignificantly affected by the N application rate in 2018,while the agronomic efficiency of applied N (AEN) and physiological efficiency of applied N (PEN) decreased significantly when excessive N was applied.N loss through NH3volatilization,leaching and surface runoff was low in the paddy fields in Northeast China.NH3volatilization accounted for 0.81 and 2.99%of the total N application in 2017 and 2018,respectively.On average,the leaching and surface runoff rates were 4.45% and less than 1.05%,respectively,but the apparent denitrification loss was approximately 42.63%.The residual N fertilizer in the soil layer (0–40 cm) was 18.37–31.81 kg N ha–1in 2017,and the residual rate was 19.28–24.50%.Residual15N from fertilizer in the soil increased significantly with increasing N fertilizer,which was mainly concentrated in the 0–10 cm soil layer,accounting for 58.45–83.54% of the total residual N,and decreased with increasing depth.While the ratio of residual N in the 0–10 cm soil layer to that in the 0–40 cm soil layer was decreased with increasing N application.Furthermore,of the residual N,approximately 5.4%was taken up on average in the following season and 50.2%was lost,but 44.4%remained in the soil.Hence,the amount of applied N fertilizer should be reduced appropriately due to the high residual N in paddy fields in Northeast China.The appropriate N fertilizer rate in the northern fields in China was determined to be 105–135 kg N ha–1in order to achieve a balance between rice yield and high N fertilizer uptake.
文摘Field experiments were carried out on roselle (Hibiscus sabdariffa L) during the 2019 and 2020 cropping seasons at the CSIR-SARI Research Station at Manga in the Upper East Region of Ghana. The aim of the experiment was to study the response of roselle to cowdung, nitrogen fertilizer and their interaction on the growth and yield of roselle. The treatments consisted of factorial combination of five rates of cowdung (0, 1.5, 2.5, 3.5 and 4.5 t/ha) and five levels of nitrogen (0, 20, 40, 60 and 80 kgN/ha) laid out in a randomized complete block design and replicated three times. Data were collected on days to 50% flowering, plant height, number of leaves per plant and dry calyx yield. The results indicated that differences in dry calyx yield due to the manure and nitrogen fertilizer effects were highly significant (P 0.01). Application rate of 2.5 t/ha manure recorded the highest yield of 340 kg/ha and 308.1 kg/ha in 2019 and 2020 respectively. Increasing manure rate from 2.5 - 3.5 t/ha did not result in significant increases in dry calyx yield. The four rates differed significantly from the control which had the least calyx yield of 190.3 kg/ha and 180 kg/ha in 2019 and 2020 respectively. Nitrogen rate of 60 kg/ha recorded the highest dry calyx yield of 510.5 kg/ha and 370.4 kg/ha in 2019 and 2020 respectively which were significantly different from calyx yields recorded by other treatments. The trend on partial budget analysis was consistent in both seasons with the highest yielding treatments (2.5 t/ha cowdung manure and 60 kg/ha) recording the highest net benefit while the control (0 kg/ha) ranked last. The application rate of 2.5 t/ha of cowdung and 60 kg/ha of Nitrogen is thus recommended for optimum roselle production and productivity in the study area.
基金supported by the Program of Shandong Modern Agricultural Technology and Industry System–Cultivation and Soil Fertilizer(SDAIT0107)the Major Application Technology Innovation Projects in Shandong Province and the Key Research and Development Projects of Shandong Province.
文摘In recent years,in order to improve nutrient use efficiency,especially nitrogen use efficiency,fertilizer valueadded technology has been developed rapidly.However,the mechanism of the effect of synergistic fertilizer on plant nitrogen utilization is not clear.A study was,therefore,conducted to explore the activities and gene expression of key enzymes for nitrogen assimilation and the gene expression of nitrogen transporters in wheat after the application of synergistic fertilizer.Soil column experiment was set up in Qingdao Agricultural University experimental base from October 2018 to June 2019.Maleic acid and itaconic acid were copolymerized with acrylic acid as cross-linking monomer to make a fluid gel,which was sprayed on the fertilizer surface to make nitrogen and phosphorus synergistic fertilizer.A total of 6 treatments was set according to different nitrogen and phosphorus fertilizer ratios:(1)100%common nitrogen fertilizer+100%common phosphate fertilizer(2)70%nitrogen synergistic fertilizer+100%phosphorus synergistic fertilizer;(3)100%nitrogen synergistic fertilizer+70%phosphorus synergistic fertilizer;(4)100%nitrogen synergistic fertilizer+100%phosphorus synergistic fertilizer;(5)70%nitrogen synergistic fertilizer+70%phosphorus synergistic fertilizer;(6)100%commercial nitrogen synergistic fertilizer+100%commercial phosphorus synergistic fertilizer.The results are as follows:(1)the enzyme activities of wheat plants under synergistic fertilizer condition were higher than those under ordinary fertilizer,except under the treatment that nitrogen and phosphorus synergistic fertilizer were both reduced;(2)the expression level of the genes under the treatment“100%nitrogen synergistic fertilizer+100%phosphorus synergistic fertilizer”was significantly higher than those in other treatments.Combined with the higher performance of nitrogen concentration in various parts of the plant under the condition of applying synergistic fertilizer,this study indicated that the application of synergistic fertilizer can improve the nitrogen metabolism of the plant by increasing the nitrogen level in the rhizosphere soil,inducing the expression of nitrogen transporter genes and key assimilation enzymes genes.
基金supported by the Ningbo Public Welfare Science and Technology Program (No.2022S097)the Fundamental Research Funds for the Central Universities (Nos.2019B17914,B210206006).
文摘The utilization of aquaculture wastewater as irrigation is an effective way to recycle and reuse water and nitrogen fertilizer resources because it contains numerous nutrients.However,it is still unclear that the pattern of substituting aquaculture wastewater irrigation for fertilizer supplementing is conducive to improving the soil nitrogen status,fruit yield and water-fertilizer use efficiency for tomato production.In this context,the experiment was intended to establish the appropriate irrigation regime of aquaculture wastewater in tomato production for freshwater replacement and fertilizer reduction to ensure good yields.Pot experiments were conducted with treatments as farmers accustomed to irrigation and fertilization used as control(CK),1.75 L aquaculture wastewater with base fertilizer(W1),2 L aquaculture wastewater with base fertilizer;and 2.25 L aquaculture wastewater with base fertilizer(W3).We examined the effects of aquaculture wastewater irrigation on soil nitrogen distribution,Nrelated hydrolases,tomato yield,and economic benefits.The results showed that the control treatment had the highest N input,about 24.68%higher than the W3 treatment,while the yield was only about 7.81%higher than W3.This indicated that the overuse of chemical fertilizer was present in the current tomato production.Although the reduction of fertilizer in aquaculture wastewater irrigation caused a decrease in tomato production,this economic loss can be compensated by cost savings in the wastewater disposal.Among aquaculture wastewater treatments,the W3 treatment had the highest overall benefit,achieving 62.63%freshwater savings,37.50%fertilizer input reduction,and an economic return of approximately 19,466 Yuan per hectare higher than the control.Additionally,increasing the irrigation volume of aquaculture wastewater could provide more available nutrients to the soil,which were more prevalent in the form of organic nitrogen.The lower soil nitrate reductase activities(NR)under aquaculture wastewater treatments after harvesting also proved that this pattern was beneficial to reduce soil nitrate nitrogen residues.Overall,the results demonstrate that aquaculture wastewater irrigation alleviates the soil nitrate residues,improves nutrient availability,and results in more economic returns with water and fertilizer conservation for the greenhouse production of tomatoes.
文摘This paper summarized the requirements of organic agriculture for soil environment,fertilizer application and irrigation water quality,put forward safeguard measures for organic agriculture in terms of soil,fertilizer and water,and finally came up with recommendations for strengthening the use of soil fertilizers in organic agriculture.
文摘As part of the promotion of common bean cultivation, fertilization methods will have to be proposed to growers. The aim of this study is therefore to develop a technical itinerary for dry bean fertilization. To this end, different types of chemical and organic fertilizers were evaluated on three dry bean varieties (HARI25/GHA19, HARI35/GHA19 and HARI36/GUI21). Seven (7) doses of chemical and organic fertilizers were used, including two controls (D0 with no fertilizer and D1, the reference dose using NPK base and cover fertilizers in the form of urea). The fertilization trial was set up as a Split-Plot design, with variety as the primary factor and dose as the secondary factor. The experiment was repeated three (3) times. The results showed that vegetative development parameters and fruit set rate varied according to the variety studied. For yield and its components, the treatments had a significant effect. Indeed, the response of varieties to fertilizers was specific. For each variety used, the optimum yield was obtained with a different treatment, thus highlighting the genotype effect of the dry bean varieties studied. Among the treatments tested, D4 (5 t organic fertilizer/ha) performed best in all three varieties, generating yield increases of 20%, 46% and 91% respectively.
文摘Worldwide, the demand for agro-organic foods that are healthy, nutritious, and environmentally friendly is increasing dramatically across all nations among consumers. Tomatoes being one of the dietary requirements in almost every meal is not exceptional and its availability in the market all year round is very important to farmers as well as consumers because it is highly demanded as a vegetable par excellence;which is either eaten raw in salads, cooked or processed into liquid ingredients. This study investigates the impact of chicken, goat, and cow manure treatments on tomato plant growth response to height, leaf length, and width, as well as fruit yield. The experimental field trials were conducted over two planting seasons in Mundri West County. It followed a Complete Randomized Design (CRD) approach, consisting of four blocks. Each block contained three treatments replicated four times and a control group. The data of measured parameters from all 16 plots were subjected to one-way Analysis of Variance (ANOVA) using the Gen Stat 14th Edition software. The findings indicate significant differences (P < 0.05) among all the different organic manure applications on tomato plant growth parameters compared to the control group. Chicken manure resulted in the tallest tomato plants (30.1 and 37.9 cm), longest leaves (9.9 and 10.4 cm), and widest leaves (2.1 and 2.5 cm) in both seasons respectively. The study showed plots treated with chicken manure had a highly significant impact (P < 0.05) on the prevalence of aphids (1.0) and white flies (1.4) with the lowest value compared to those with cow and goat manure applied. Additionally, chicken manure led to the highest yields (39.30 and 49.49 tons/ha) in both seasons. Based on these findings, it can be concluded that using chicken manure effectively improves the performance of Rio Grande Tomatoes, and thus, farmers are encouraged to utilize chicken manure to maximize their tomato yields.
文摘Local knowledge has an important role in agricultural practices.This study aims to describe the local knowledge of farming communities about the use of organic fertilizers as a strategy to increase cashew production in Buton Utara Regency,Southeast Celebes,Indonesia.The research method used is a qualitative approach with data collection techniques using in-depth interviews and observation.The research results showed that the farming community in this area has in-depth local knowledge of how to make and apply effective organic fertilizers sourced from the surrounding natural environment.However,there are challenges in access to the organic materials needed and constraints in the widespread implementation of organic fertilizers.This study recommends strengthening education and training programs to increase farmers’awareness and skills in using organic fertilizers.