To evaluate the effect of organic manure application with chemical fertilizers on rice yield and soil fertility under long-term double-rice cropping system, a six year field experiment was conducted continually in the...To evaluate the effect of organic manure application with chemical fertilizers on rice yield and soil fertility under long-term double-rice cropping system, a six year field experiment was conducted continually in the paddy soil derived from Quaternary red clay in Hunan Province of southern China. Four different treatments, i.e., no nitrogen with chemical P and K (PK), swine manure only (M), N, P and K chemical fertilizers only (NPK), and half chemical fertilizers combined with half swine manure (NPKM) with four replications were included. Each N, P and K application rate was the same at all the treatments (except the N application rate at PK) and N application rate was 150 kg N ha^-1. All fertilizers were applied to soil tillage layer with once application as baseal fertilizers. The nutrients uptake rate, grain yield, nitrogen use efficiency, and soil organic matter content at each treatment were investigated. The NPKM treatment achieved the highest mean annual yield of 12.2 t ha^-1 (68% higher than that of PK). Higher dry matter accumulation and nutrients absorption were observed during the middle-late growth period in the NPKM treatment, with higher panicle number per unit and filled-grain number per panicle. Its average nitrogen use efficiency was 36.3% and soil organic matter increased by 18.5% during the experimental period in the NPKM treatment, which were significantly higher than those in the NPK treatment. Organic manure application with chemical fertilizers increased the yield and nitrogen use efficiency of rice, reduced the risk of environmental pollution and improved soil fertility greatly. It could be a good practical technique that protects the environment and raises the rice yield in this region.展开更多
By two years (2007-2008) located fertilizer experiment, the effect of long-term combined application of organic and inorganic fertilizers on black soil fertility and crop yield was investigated in Shuangcheng City, ...By two years (2007-2008) located fertilizer experiment, the effect of long-term combined application of organic and inorganic fertilizers on black soil fertility and crop yield was investigated in Shuangcheng City, Heilongjiang Province. The results showed that the combined application of organic and inorganic fertilizers could increase the organinc matter, alkaline nitrogen, available phosphorus and available potassium. At the same time, the increasing application of organic fertilizer could reduce the soil bulk density and improve the field moisture capacity. Field moisture capacity and organic matter of the combined application of high quantities of organic manure and inorganic fertilizers AtB5 treatment increased the fhstest, organic matter increased by 3.33 g. kg and field moisture capacity increased by 11.25% than the beginning of the experiment. Under the same fertilization, the combined application of organic and inorganic fertilizers' increasing production range was higher than the single chemical fertilizers' which was from 0.8% to 9.4%. The results showed that the combined application of organic and inorganic fertilizers could increase the nutrient contents of soil and also was the highest productivity contribution to black soil fertility. It was the best fertilization structure of increasing productivity level and improving the soil fertility.展开更多
Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical...Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical fertilizer with organic manure affects rice yield,carbon sequestration rate(CSR),and nitrogen use efficiency(NUE)while ensuring environmental safety remains unclear.This study assessed the long-term effect of substituting chemical fertilizer with organic manure on rice yield,CSR,and NUE.It also determined the optimum substitution ratio in the acidic soil of southern China.The treatments were:(i)NPK0,unfertilized control;(ii)NPK1,100%chemical nitrogen,phosphorus,and potassium fertilizer;(iii)NPKM1,70%chemical NPK fertilizer and 30%organic manure;(iv)NPKM2,50%chemical NPK fertilizer and 50%organic manure;and(v)NPKM3,30%chemical NPK fertilizer and 70%organic manure.Milk vetch and pig manure were sources of manure for early and late rice seasons,respectively.The result showed that SOC content was higher in NPKM1,NPKM2,and NPKM3 treatments than in NPK0 and NPK1 treatments.The carbon sequestration rate increased by 140,160,and 280%under NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK1 treatment.Grain yield was 86.1,93.1,93.6,and 96.5%higher under NPK1,NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK0 treatment.The NUE in NPKM1,NPKM2,and NPKM3 treatments was higher as compared to NPK1 treatment for both rice seasons.Redundancy analysis revealed close positive relationships of CSR with C input,total N,soil C:N ratio,catalase,and humic acids,whereas NUE was closely related to grain yield,grain N content,and phenol oxidase.Furthermore,CSR and NUE negatively correlated with humin acid and soil C:P and N:P ratios.The technique for order of preference by similarity to ideal solution(TOPSIS)showed that NPKM3 treatment was the optimum strategy for improving CSR and NUE.Therefore,substituting 70%of chemical fertilizer with organic manure could be the best management option for increasing CSR and NUE in the paddy fields of southern China.展开更多
In order to illustrate the change of nitrogen (N) supply capacity after long-term application of manure and chemical fertilizer, as well as to properly manage soil fertility through fertilizer application under the ...In order to illustrate the change of nitrogen (N) supply capacity after long-term application of manure and chemical fertilizer, as well as to properly manage soil fertility through fertilizer application under the soil-climatic conditions of the North China Plain, organic N forms were quantified in the topsoil with different manure and chemical fertilizer treatments in a 15-year fertilizer experiment in a Chinese calcareous alluvial soil. Soil total N (TN) and various organic N forms were significantly influenced by long-term application of chemical fertilizer and manure. TN, total hydrolysable N, acid-lnsoluble N, amino acid N and ammonium N in the soil increased significantly (P 〈 0.05) with increasing manure and fertilizer N rates, but were not influenced by increasing P rates. Also, application of manure or N fertilizer or P fertilizer did not significantly influence either the quantity of amino sugar N or its proportion of TN. Application of manure significantly increased (P 〈 0.05) hydrolysable unknown N, but adding N or P did not. In addition, application of manure or N fertilizer or P fertilizer did not significantly influence the proportions of different soil organic N forms.展开更多
A long-term experiment beginning in 1981 in Jinxian County of Jiangxi Province, subtropical China, was conducted in a paddy field under a double rice cropping system with four different fertilization regimes, includin...A long-term experiment beginning in 1981 in Jinxian County of Jiangxi Province, subtropical China, was conducted in a paddy field under a double rice cropping system with four different fertilization regimes, including 1) no fertilizer as control (CK), 2) balanced chemical N, P, and K fertilizers (NPK), 3) organic manure using milk vetch and pig manure in the early and late rice growing season, respectively (OM), and 4) balanced chemical fertilizers combined with organic manure (NPKM). Samples (0-17 cm) of the paddy field soil, which was derived from Quaternary red clay, were collected after the late rice harvest in November 2003 for determination of total organic carbon (TOC) and total nitrogen (TN) and fractions of organic C and N. Results showed that TOC and TN in the NPKM and OM treatments were significantly higher than those in other two treatments (CK and NPK). Application of organic manure with or without chemical fertilizers significantly increased the contents of all fractions of organic C and N, whereas chemical fertilizer application only increased the contents of occluded particulate organic C (oPOC) and amino acid N. In addition, application of organic manure significantly enhanced the proportions of free particulate organic carbon (fPOC) and oPOC in total C, and those of amino sugar N and amino acid N (P < 0.01) in total N. In contrast, chemical fertilizer application only increased the proportions of oPOC and amino acid N (P < 0.05). There were no significant differences in either contents or proportions of soil organic C and organic N fractions between the NPKM and OM treatments. These indicated that organic manure application with or without chemical fertilizers played the most significant role in enhancing soil organic C and N quantity and quality in the paddy field studied.展开更多
In recent years,the utilization of manure resources for livestock and poultry farming has attracted a widespread attention,and manure resources utilization models suitable for different regional characteristics have f...In recent years,the utilization of manure resources for livestock and poultry farming has attracted a widespread attention,and manure resources utilization models suitable for different regional characteristics have formed gradually.Among them,the production of organic fertilizer from animal manure is a vital utilization method.However,there are still some problems such as high production costs,difficult sales,and the unwillingness of farmers to use organic fertilizers which have affected the breeding cycle and the sustainability of manure treatment in livestock and poultry breeding.This article selected 371 organic fertilizer plants,related farms and farmers in China,focusing on the main links of the entire process of livestock manure-organic fertilizer-farm application,and studied the mode of animal manure collection by organic fertilizer plants.The costs of organic fertilizer production and farmland application were discussed.Moreover,suggestions were made for the promotion and implementation of large-scale organic fertilizers to make good utilization of manure resources in livestock and poultry farming.展开更多
Understanding the mechanism of soil organic carbon(SOC)sequestration is of paramount importance in sustaining crop productivity and mitigating climate change.Long-term trials were employed to investigate the responses...Understanding the mechanism of soil organic carbon(SOC)sequestration is of paramount importance in sustaining crop productivity and mitigating climate change.Long-term trials were employed to investigate the responses of total SOC and its pools,i.e.,mineral-associated OC(MOC),particulate OC(POC,containing Light-POC and Heavy-POC),to fertilization regimes at Yangling(25-year),Tianshui(35-year)and Pingliang(37-year)under a rain-fed cropping system in the Loess Plateau.The fertilization regimes in each trial included three treatments,i.e.,control(no nutrient input,CK),chemical fertilizers(CF),and organic manure plus chemical fertilizers(MCF).Relative to the CK,long-term fertilization appreciably increased SOC storage by 134,89 and 129 kg ha^(–1)yr^(–1)under CF,and 418,153 and 384 kg ha^(–1)yr^(–1)under MCF in plough layer soils(0–20 cm),respectively,at the Yangling,Tianshui and Pingliang sites.The MOC pools accounted for 72,67 and 64%of the total SOC at the above three sites with sequestration rates of 76,57 and 83 kg ha^(–1)yr^(–1)under CF and 238,118 and 156 kg ha^(–1)yr^(–1)under MCF,respectively.Moreover,the MOC pool displayed a saturation behavior under MCF conditions.The POC accordingly constituted 27,33 and 36%of SOC,of which Light-POC accounted for 11,17 and 22%and Heavy-POC for 17,16 and 15%of SOC,respectively.The sequestration rates of POC were 58,32 and 46 kg ha^(–1)yr^(–1)under CF,and 181,90 and 228 kg ha^(–1)yr^(–1)under MCF at the three respective sites,in which Light-POC explained 59,81 and 72%of POC under CF,and 60,40 and 69%of POC under MCF,with Heavy-POC accounting for the balance.Compared with CK,the application of CF alone did not affect the proportions of MOC or total POC to SOC,whereas MCF application markedly reduced the proportion of MOC and increased the POC ratio,mainly in the Light-POC pool.The distribution of SOC among different pools was closely related to the distribution and stability of aggregates.The present study confirmed that organic manure amendment not only sequestered more SOC but also significantly altered the composition of SOC,thus improving SOC quality,which is possibly related to the SOC saturation level.展开更多
基金the National Key Technologies R & D Program of China (2006BAD05B09, 2006BAD02A14)the National Ba- sic Research Program of China (2007CB109308)the China-Japan Collaboration Project
文摘To evaluate the effect of organic manure application with chemical fertilizers on rice yield and soil fertility under long-term double-rice cropping system, a six year field experiment was conducted continually in the paddy soil derived from Quaternary red clay in Hunan Province of southern China. Four different treatments, i.e., no nitrogen with chemical P and K (PK), swine manure only (M), N, P and K chemical fertilizers only (NPK), and half chemical fertilizers combined with half swine manure (NPKM) with four replications were included. Each N, P and K application rate was the same at all the treatments (except the N application rate at PK) and N application rate was 150 kg N ha^-1. All fertilizers were applied to soil tillage layer with once application as baseal fertilizers. The nutrients uptake rate, grain yield, nitrogen use efficiency, and soil organic matter content at each treatment were investigated. The NPKM treatment achieved the highest mean annual yield of 12.2 t ha^-1 (68% higher than that of PK). Higher dry matter accumulation and nutrients absorption were observed during the middle-late growth period in the NPKM treatment, with higher panicle number per unit and filled-grain number per panicle. Its average nitrogen use efficiency was 36.3% and soil organic matter increased by 18.5% during the experimental period in the NPKM treatment, which were significantly higher than those in the NPK treatment. Organic manure application with chemical fertilizers increased the yield and nitrogen use efficiency of rice, reduced the risk of environmental pollution and improved soil fertility greatly. It could be a good practical technique that protects the environment and raises the rice yield in this region.
基金Supported by Black Soil Conservation Tillage and Oriented Cultivation Technology Research (GB06B107-1)Innovation Fund of Northeast Agricultural University (CXP7003-3-3)+1 种基金Northeast Agricultural University and the Scientific Research Fund of Heilongjiang Province to Black CollegesUniversities Cold Key Laboratory of Utilization and Protection of Open-funded Projects (GXS08-5)
文摘By two years (2007-2008) located fertilizer experiment, the effect of long-term combined application of organic and inorganic fertilizers on black soil fertility and crop yield was investigated in Shuangcheng City, Heilongjiang Province. The results showed that the combined application of organic and inorganic fertilizers could increase the organinc matter, alkaline nitrogen, available phosphorus and available potassium. At the same time, the increasing application of organic fertilizer could reduce the soil bulk density and improve the field moisture capacity. Field moisture capacity and organic matter of the combined application of high quantities of organic manure and inorganic fertilizers AtB5 treatment increased the fhstest, organic matter increased by 3.33 g. kg and field moisture capacity increased by 11.25% than the beginning of the experiment. Under the same fertilization, the combined application of organic and inorganic fertilizers' increasing production range was higher than the single chemical fertilizers' which was from 0.8% to 9.4%. The results showed that the combined application of organic and inorganic fertilizers could increase the nutrient contents of soil and also was the highest productivity contribution to black soil fertility. It was the best fertilization structure of increasing productivity level and improving the soil fertility.
基金supported by the National Natural Science Foundation of China (41671301)the National Key Research and Development Program of China (2016YFD0300901)the Central Public-interest Scientific Institution Basal Research Fund, China (GY2022-13-5, G2022-02-2, G2022-02-3 and G2022-02-10)
文摘Combined application of chemical fertilizers with organic amendments was recommended as a strategy for improving yield,soil carbon storage,and nutrient use efficiency.However,how the long-term substitution of chemical fertilizer with organic manure affects rice yield,carbon sequestration rate(CSR),and nitrogen use efficiency(NUE)while ensuring environmental safety remains unclear.This study assessed the long-term effect of substituting chemical fertilizer with organic manure on rice yield,CSR,and NUE.It also determined the optimum substitution ratio in the acidic soil of southern China.The treatments were:(i)NPK0,unfertilized control;(ii)NPK1,100%chemical nitrogen,phosphorus,and potassium fertilizer;(iii)NPKM1,70%chemical NPK fertilizer and 30%organic manure;(iv)NPKM2,50%chemical NPK fertilizer and 50%organic manure;and(v)NPKM3,30%chemical NPK fertilizer and 70%organic manure.Milk vetch and pig manure were sources of manure for early and late rice seasons,respectively.The result showed that SOC content was higher in NPKM1,NPKM2,and NPKM3 treatments than in NPK0 and NPK1 treatments.The carbon sequestration rate increased by 140,160,and 280%under NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK1 treatment.Grain yield was 86.1,93.1,93.6,and 96.5%higher under NPK1,NPKM1,NPKM2,and NPKM3 treatments,respectively,compared to NPK0 treatment.The NUE in NPKM1,NPKM2,and NPKM3 treatments was higher as compared to NPK1 treatment for both rice seasons.Redundancy analysis revealed close positive relationships of CSR with C input,total N,soil C:N ratio,catalase,and humic acids,whereas NUE was closely related to grain yield,grain N content,and phenol oxidase.Furthermore,CSR and NUE negatively correlated with humin acid and soil C:P and N:P ratios.The technique for order of preference by similarity to ideal solution(TOPSIS)showed that NPKM3 treatment was the optimum strategy for improving CSR and NUE.Therefore,substituting 70%of chemical fertilizer with organic manure could be the best management option for increasing CSR and NUE in the paddy fields of southern China.
基金Project supported by the National Natural Science Foundation of China (Nos. 30390080 and 30370287).
文摘In order to illustrate the change of nitrogen (N) supply capacity after long-term application of manure and chemical fertilizer, as well as to properly manage soil fertility through fertilizer application under the soil-climatic conditions of the North China Plain, organic N forms were quantified in the topsoil with different manure and chemical fertilizer treatments in a 15-year fertilizer experiment in a Chinese calcareous alluvial soil. Soil total N (TN) and various organic N forms were significantly influenced by long-term application of chemical fertilizer and manure. TN, total hydrolysable N, acid-lnsoluble N, amino acid N and ammonium N in the soil increased significantly (P 〈 0.05) with increasing manure and fertilizer N rates, but were not influenced by increasing P rates. Also, application of manure or N fertilizer or P fertilizer did not significantly influence either the quantity of amino sugar N or its proportion of TN. Application of manure significantly increased (P 〈 0.05) hydrolysable unknown N, but adding N or P did not. In addition, application of manure or N fertilizer or P fertilizer did not significantly influence the proportions of different soil organic N forms.
基金Project supported by the National Natural Science Foundation of China (No. 30571094)the New Century Excellent Talents in University of China (No. NCET-05-0492)the Eleventh Five-Year Plan of China (Nos. 2006BAD15B02 and 2006BAD02A15)
文摘A long-term experiment beginning in 1981 in Jinxian County of Jiangxi Province, subtropical China, was conducted in a paddy field under a double rice cropping system with four different fertilization regimes, including 1) no fertilizer as control (CK), 2) balanced chemical N, P, and K fertilizers (NPK), 3) organic manure using milk vetch and pig manure in the early and late rice growing season, respectively (OM), and 4) balanced chemical fertilizers combined with organic manure (NPKM). Samples (0-17 cm) of the paddy field soil, which was derived from Quaternary red clay, were collected after the late rice harvest in November 2003 for determination of total organic carbon (TOC) and total nitrogen (TN) and fractions of organic C and N. Results showed that TOC and TN in the NPKM and OM treatments were significantly higher than those in other two treatments (CK and NPK). Application of organic manure with or without chemical fertilizers significantly increased the contents of all fractions of organic C and N, whereas chemical fertilizer application only increased the contents of occluded particulate organic C (oPOC) and amino acid N. In addition, application of organic manure significantly enhanced the proportions of free particulate organic carbon (fPOC) and oPOC in total C, and those of amino sugar N and amino acid N (P < 0.01) in total N. In contrast, chemical fertilizer application only increased the proportions of oPOC and amino acid N (P < 0.05). There were no significant differences in either contents or proportions of soil organic C and organic N fractions between the NPKM and OM treatments. These indicated that organic manure application with or without chemical fertilizers played the most significant role in enhancing soil organic C and N quantity and quality in the paddy field studied.
基金This work was supported by the National Key R&D Program of China(2017YFD0800800).
文摘In recent years,the utilization of manure resources for livestock and poultry farming has attracted a widespread attention,and manure resources utilization models suitable for different regional characteristics have formed gradually.Among them,the production of organic fertilizer from animal manure is a vital utilization method.However,there are still some problems such as high production costs,difficult sales,and the unwillingness of farmers to use organic fertilizers which have affected the breeding cycle and the sustainability of manure treatment in livestock and poultry breeding.This article selected 371 organic fertilizer plants,related farms and farmers in China,focusing on the main links of the entire process of livestock manure-organic fertilizer-farm application,and studied the mode of animal manure collection by organic fertilizer plants.The costs of organic fertilizer production and farmland application were discussed.Moreover,suggestions were made for the promotion and implementation of large-scale organic fertilizers to make good utilization of manure resources in livestock and poultry farming.
基金sponsored by the Ministry of Agriculture and Rural Affairs of China under Special funds for the Operation and Maintenance of Scientific Research Facilities(G202010-2)。
文摘Understanding the mechanism of soil organic carbon(SOC)sequestration is of paramount importance in sustaining crop productivity and mitigating climate change.Long-term trials were employed to investigate the responses of total SOC and its pools,i.e.,mineral-associated OC(MOC),particulate OC(POC,containing Light-POC and Heavy-POC),to fertilization regimes at Yangling(25-year),Tianshui(35-year)and Pingliang(37-year)under a rain-fed cropping system in the Loess Plateau.The fertilization regimes in each trial included three treatments,i.e.,control(no nutrient input,CK),chemical fertilizers(CF),and organic manure plus chemical fertilizers(MCF).Relative to the CK,long-term fertilization appreciably increased SOC storage by 134,89 and 129 kg ha^(–1)yr^(–1)under CF,and 418,153 and 384 kg ha^(–1)yr^(–1)under MCF in plough layer soils(0–20 cm),respectively,at the Yangling,Tianshui and Pingliang sites.The MOC pools accounted for 72,67 and 64%of the total SOC at the above three sites with sequestration rates of 76,57 and 83 kg ha^(–1)yr^(–1)under CF and 238,118 and 156 kg ha^(–1)yr^(–1)under MCF,respectively.Moreover,the MOC pool displayed a saturation behavior under MCF conditions.The POC accordingly constituted 27,33 and 36%of SOC,of which Light-POC accounted for 11,17 and 22%and Heavy-POC for 17,16 and 15%of SOC,respectively.The sequestration rates of POC were 58,32 and 46 kg ha^(–1)yr^(–1)under CF,and 181,90 and 228 kg ha^(–1)yr^(–1)under MCF at the three respective sites,in which Light-POC explained 59,81 and 72%of POC under CF,and 60,40 and 69%of POC under MCF,with Heavy-POC accounting for the balance.Compared with CK,the application of CF alone did not affect the proportions of MOC or total POC to SOC,whereas MCF application markedly reduced the proportion of MOC and increased the POC ratio,mainly in the Light-POC pool.The distribution of SOC among different pools was closely related to the distribution and stability of aggregates.The present study confirmed that organic manure amendment not only sequestered more SOC but also significantly altered the composition of SOC,thus improving SOC quality,which is possibly related to the SOC saturation level.