期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Effect of organic mineral supplementation in reducing oxidative stress in Holstein calves during short‑term heat stress and recovery conditions
1
作者 A-Rang Son Seon-Ho Kim +3 位作者 Mahfuzul Islam Michelle Miguel Ye Pyae Naing Sang-Suk Lee 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期812-825,共14页
Background This study investigated the effects of inorganic and organic minerals on physiological responses,oxidative stress reduction,and rumen microbiota in Holstein bull calves(123.81±9.76 kg;5 months old)duri... Background This study investigated the effects of inorganic and organic minerals on physiological responses,oxidative stress reduction,and rumen microbiota in Holstein bull calves(123.81±9.76 kg;5 months old)during short-term heat stress(HS)and recovery periods.Eight Holstein calves were randomly assigned to four treatment groups:no mineral supplementation(Con),inorganic minerals(IM),organic minerals(OM),and high-concentration organic minerals(HOM)and two thermal environments(HS and recovery)using 4×2 factorial arrangement in a crossover design of four periods of 35 d.Calves were maintained in a temperature-controlled barn.The experimental period consisted of 14 d of HS,14 d of recovery condititon,and a 7-d washing period.Results Body temperature and respiration rate were higher in HS than in the recovery conditions(P<0.05).Selenium concentration in serum was high in the HOM-supplemented calves in both HS(90.38μg/dL)and recovery periods(102.00μg/dL)(P<0.05).During the HS period,the serum cortisol was 20.26 ng/mL in the HOM group,which was 5.60 ng/mL lower than in the control group(P<0.05).The total antioxidant status was the highest in the OM group(2.71 mmol Trolox equivalent/L),followed by the HOM group during HS,whereas it was highest in the HOM group(2.58 mmol Trolox equivalent/L)during the recovery period(P<0.05).Plasma malondialdehyde and HSP70 levels were decreased by HOM supplementation during the HS and recovery periods,whereas SOD and GPX levels were not significantly affected(P>0.05).The principal coordinate analysis represented that the overall rumen microbiota was not influenced by mineral supplementation;however,temperature-induced microbial structure shifts were indicated(PERMANOVA:P<0.05).At the phylum level,Firmicutes and Actinobacteria decreased,whereas Fibrobacteres,Spirochaetes,and Tenericutes increased(P<0.05),under HS conditions.The genus Treponema increased under HS conditions,while Christensenella was higher in recovery conditions(P<0.05).Conclusion HOM supplementation during HS reduced cortisol concentrations and increased total antioxidant status in Holstein bull calves,suggesting that high organic mineral supplementation may alleviate the adverse effects of HS. 展开更多
关键词 Antioxidant status Heat stress Holstein bull calves organic mineral supplementation Oxidative stress
下载PDF
Predicting dynamics of soil organic carbon mineralization with a double exponential model in different forest belts of China 被引量:10
2
作者 YANG Li-xia PAN Jian-jun YUAN Shao-feng 《Journal of Forestry Research》 SCIE CAS CSCD 2006年第1期39-43,共5页
The dynamics of soil organic carbon (SOC) was analyzed by using laboratory incubation and double exponential model that mineralizable SOC was separated into active carbon pools and slow carbon pools in forest soils ... The dynamics of soil organic carbon (SOC) was analyzed by using laboratory incubation and double exponential model that mineralizable SOC was separated into active carbon pools and slow carbon pools in forest soils derived from Changbai and Qilian Mountain areas. By analyzing and fitting the CO2 evolved rates with SOC mineralization, the results showed that active carbon pools accounted tor 1.0% to 8.5% of SOC with an average of mean resistant times (MRTs) for 24 days, and slow carbon pools accounted for 91% to 99% of SOC with an average of MRTs for 179 years. The sizes and MRTs of slow carbon pools showed that SOC in Qilian Mountain sites was more difficult to decompose than that in Changbai Mountain sites. By analyzing the effects of temperature, soil clay content and elevation on SOC mineralization, results indicated that mineralization of SOC was directly related to temperature and that content of accumulated SOC and size of slow carbon pools from Changbai Mountain and Qilian Mountain sites increased linearly with increasing clay content, respectively, which showed temperature and clay content could make greater effect on mineralization of SOC. 展开更多
关键词 Soil organic carbon organic carbon mineralization Double exponential model Active carbon pools Slow carbon pools Mean resistant times (MRTs)
下载PDF
Composition and mineralization of soil organic carbon pools in four single-tree species forest soils 被引量:4
3
作者 Qingkui Wang Micai Zhong 《Journal of Forestry Research》 SCIE CAS CSCD 2016年第6期1277-1285,共9页
Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To un... Forest soil carbon (C) is an important compo- nent of the global C cycle. However, the mechanism by which tree species influence soil organic C (SOC) pool composition and mineralization is poorly understood. To understand the effect of tree species on soil C cycling, we assessed total, labile, and recalcitrant SOC pools, SOC chemical composition by 13C nuclear magnetic resonance spectroscopy, and SOC mineralization in four monoculture plantations. Labile and recalcitrant SOC pools in surface (0-10 cm) and deep (40-60 cm) soils in the four forests contained similar content. In contrast, these SOC pools exhibited differences in the subsurface soil (from 10 to 20 cm and from 20 to 40 cm). The alkyl C and O-alkyl C intensities of SOC were higher in Schima superba and Michelia macclurei forests than in Cunninghamia lanceolata and Pinus massoniana forests. In surface soil, S. superba and M. macclurei forests exhibited higher SOC mineralization rates than did P. massoniana and C.lanceolata forests. The slope of the straight line between C60 and labile SOC was steeper than that between C60 and total SOC. Our results suggest that roots affected the composition of SOC pools. Labile SOC pools also affected SOC mineralization to a greater extent than total SOC pools. 展开更多
关键词 ^13C nuclear magnetic resonance Labile soil organic carbon Monoculture plantation Soil organic carbon mineralization Tree species
下载PDF
Phosphate and Nitrate Release from Mucky Mineral Soils
4
作者 Michael A.Leblanc Léon E.Parent Gilles Gagné 《Open Journal of Soil Science》 2013年第2期107-114,共8页
High-organic (mucky) mineral soils make a small proportion of the Canadian agricultural land but are highly productive, especially for organic farming. Although these high-quality soils may release large amounts of ni... High-organic (mucky) mineral soils make a small proportion of the Canadian agricultural land but are highly productive, especially for organic farming. Although these high-quality soils may release large amounts of nitrate and phosphate to the environment, there is yet no reliable agro-environmental indicator for managing N and P compared to the adjacent mineral and organic soils. Our objective was to quantify the N mineralization and P environmental risks of mucky mineral soils. Nine Canadian soil series (eight Orthic Humic Gleysols and one Terric Humisol with three variants) were analyzed for texture, pH(CaCl2), total C and N, oxalate and Mehlich-III (M-III) extractable P, Al and Fe, and water extractable P (Pw). Soil texture varied from loamy sand to heavy clay, organic carbon (OC) content ranged from 14 to 392 g·OC·kg-1, total N from 1.21 to 16.38 g·N·kg-1, and degree of P saturation (DPSM-III) as molar (P/[Al + γFe])M-III percentage between 0.3% and 11.3%. After 100 d of incubation, soils released 31 to 340 mg·N·kg-1. The N mineralization rate was closely correlated to organic matter content (r = 0.91, p Sandy to loamy soils released 1.2 - 1.8 kg·N·ha-1·d-1 compared to 1.6 - 2.4 kg·N·ha-1·d-1 for clayey soils, 2.0 - 2.8 kg·N·ha-1·d-1 for mucky clayey soils and 2.6 - 2.7 kg·N·ha-1·d-1 for Humisol. For (P/[Al + 3Fe])M-III ratios of mucky clayey soils below 4.5%, water-extractable P did not exceed threshold of 9.7 mg Pw L-1. Mucky clayey soils could be managed for N similarly to Humisol and for P with (P/[Al + 3Fe])M-III percentage not exceeding 4.5%. 展开更多
关键词 Degree of Phosphate Saturation Gleysol Humisol organic Nitrogen Mineralization Zero-Order Kinetics
下载PDF
Limited impacts of occasional tillage on dry aggregate size distribution and soil carbon and nitrogen fractions in semi-arid drylands
5
作者 Wooiklee S.Paye Vesh R.Thapa Rajan Ghimire 《International Soil and Water Conservation Research》 SCIE CSCD 2024年第1期96-106,共11页
Tillage management that minimizes the frequency and intensity of soil disturbance can increase soil carbon(C)and nitrogen(N)sequestration and improve the resilience of dryland cropping systems,yet the impact of occasi... Tillage management that minimizes the frequency and intensity of soil disturbance can increase soil carbon(C)and nitrogen(N)sequestration and improve the resilience of dryland cropping systems,yet the impact of occasional disturbance on soil aggregate formation and the soil organic carbon(SOC)storage within aggregates has not been studied well.We evaluated the effect of four tillage management practices on soil dry aggregate size distribution,aggregate-protected C and N,mineral-associated organic matter carbon(MAOM-C),particulate organic matter carbon(POM-C),and corn(Zea mays L.)and sorghum(Sorghum bicolor(L.)Moench)yields in a semi-arid dryland cropping system.Treatments included conventional tillage(CT),strip-tillage(ST),no-tillage(NT),and occasional tillage(OT)management in a corn-sorghum rotation.Soil macro-aggregates were 51-54%greater under ST,NT,and OT,while small and micro-aggregates were greater in CT.Conventional tillage reduced soil aggregate-associated C by 28-31%in macro-aggregates and 47-53%in small aggregates at 26 months(M)sampling compared to ST,NT,and OT.In clay+silt fraction,CT had 14-16%,21-26%,and 36-43%less SOC at 7,14,and 26M samplings,respectively,than ST,NT,and OT.Aggregate associated N was generally similar under ST,NT,and OT,which was greater on average than CT.Soil MOAM-C and POM-C under ST,NT,and OT were generally greater than respective SOC fractions under CT at 19 and 26 M after OT implementation.Corn and sorghum yields were similar among tillage systems in 2020,but greater under ST,NT,and OT than CT in 2021.Our results suggest that while frequent intensive tillage can lower SOC and N storage,a single stubble mulch occasional tillage after several years of NT does not lead to soil C and N losses and soil structural instability in semi-arid drylands. 展开更多
关键词 Conventional tillage Occasional tillage Aggregate associated carbon Mineral associated organic matter carbon(MAOM-C) Particulate organic matter carbon(POM-C)
原文传递
Bulk density of mineral and organic soils in the Canada’s arctic and sub-arctic 被引量:1
6
作者 M.F.Hossain W.Chen Yu Zhang 《Information Processing in Agriculture》 EI 2015年第3期183-190,共8页
Bulk density is an indicator of soil compaction subject to anthropogenic impact,essential to the interpretation of any nutrient budgets,especially to perform carbon inventories.It is so expensive to measure bulk densi... Bulk density is an indicator of soil compaction subject to anthropogenic impact,essential to the interpretation of any nutrient budgets,especially to perform carbon inventories.It is so expensive to measure bulk density in arctic/sub-arctic and there are relatively very few field measurements are available.Therefore,to establish a bulk density and SOC empirical relationship in Canada’s arctic and sub-arctic ecosystems,compiled all the bulk density and SOC measurements that are available in Northern Canada.In addition an attempt has been made for bulk density and SOC field measurement in Yellowknife and Lupin,to develop an empirical relationship for Canada’s arctic and sub-arctic.Relationships between bulk density(BD)and soil organic carbon(SOC)for mineral soil and organic soils(0–100 cm depth)were described by exponential functions.The best fit model,predictive bulk density(BDp),for mineral soil,(BDp=0.701+0.952 exp(0.29 SOC),n=702,R2=0.99);for organic soil(BDp=0.074+2.632 exp(0.076 SOC),n=674,R2=0.93).Different soil horizons have different bulk densities and may require different predictive equations,therefore,developed predictive best fit exponential equation for both mineral and organic soils together(BDp=0.071+1.322 exp(0.071 SOC),n=1376,R2=0.984),where X is a dummy variable with a value of 0 for surface peat(0–25 cm depth)and 1 for subsurface peat(25–175 cm).We recommend using the soil organic carbon density approach to estimate BD from SOC because it allows BD to be predicted without significant bias. 展开更多
关键词 Bulk density Mineral and organic soils Canada’s arctic and sub-arctic
原文传递
Dissimilatory iron reduction contributes to anaerobic mineralization of sediment in a shallow transboundary lake 被引量:2
7
作者 Yuxiang Yuan Cong Ding +10 位作者 Haitao Wu Xue Tian Min Luo Weiyi Chang Lei Qin Liang Yang Yuanchun Zou Kaikai Dong Xiaoyan Zhu Ming Jiang Marinus L.Otte 《Fundamental Research》 CSCD 2023年第6期844-851,共8页
Dissimilatory iron reduction(DIR)coupled with carbon cycling is increasingly being recognized as an influential process in freshwater wetland soils and sediments.The role of DIR in organic matter(OM)mineralization,how... Dissimilatory iron reduction(DIR)coupled with carbon cycling is increasingly being recognized as an influential process in freshwater wetland soils and sediments.The role of DIR in organic matter(OM)mineralization,however,is still largely unknown in lake sediment environments.In this study,we clarified rates and pathways of OM mineralization in two shallow lakes with seasonal hydrological connectivity and different eutrophic situations.We found that in comparison with the domination of DIR(55%)for OM mineralization in Lake Xiaoxingkai,the contribution of methanogenesis was much higher(68%)in its connected lake(Lake Xingkai).The differences in rates and pathways of sediment OM mineralization between the two lakes were attributed to higher concentrations of carbonate associated iron oxides(Fecarb)in Lake Xiaoxingkai compared to Lake Xingkai(P=0.002),due to better deposition mixing,more contributions of terrigenous detrital materials,and higher OM content in Lake Xiaoxingkai.Results of structural equation modeling showed that Fecarb and total iron content(TFe)regulated 25%of DIR in Lake Xiaoxingkai and 76%in Lake Xingkai,accompanied by a negative effect of TFe on methanogenesis in Lake Xingkai.The relative abundance and diversity of Fe-reducing bacteria were significantly different between the two lakes,and showed a weak effect on sediment OM mineralization.Our findings emphasize the role of iron minerals and geochemical characterizations in regulating rates and pathways of OM mineralization,and deepen the understanding of carbon cycling in lake sediments. 展开更多
关键词 Dissimilatory iron reduction organic matter mineralization Methane production Iron oxides Carbon cycling
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部