We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su Schrieffer Heeger (SSH) model with a nonadiabatic dynamics method...We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su Schrieffer Heeger (SSH) model with a nonadiabatic dynamics method. It is found that a match between the Fermi level of electrodes and the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of organic molecules can be greatly affected by the length of the organic chains, which has a great impact on electron injection. The correlation between oligomers and electrodes is found to open more efficient channels for electron injection as compared with that in polymer/electrode structures. For oligomer/electrode structures, we show that the Schottky barrier essentially does not affect the electron injection as the electrode work function is smaller than a critical value work-function electrode. For polymer/electrode structures This means that the Schottky barrier is pinned for a small we find that it is possible for the Fermi level of electrodes to be pinned to the polaronic level. The condition under which the Fermi level of electrodes exceeds the polaronic level of polymers is shown to not always lead to spontneous electron transfer from electrodes to polymers.展开更多
The interaction energy of two molecules system plays a critical role in analyzing the interacting effect in molecular dynamic simulation.Since the limitation of quantum mechanics calculating resources,the interaction ...The interaction energy of two molecules system plays a critical role in analyzing the interacting effect in molecular dynamic simulation.Since the limitation of quantum mechanics calculating resources,the interaction energy based on quantum mechanics can not be merged into molecular dynamic simulation for a long time scale.A deep learning framework,deep tensor neural network,is applied to predict the interaction energy of three organic related systems within the quantum mechanics level of accuracy.The geometric structure and atomic types of molecular conformation,as the data descriptors,are applied as the network inputs to predict the interaction energy in the system.The neural network is trained with the hierarchically generated conformations data set.The complex tensor hidden layers are simplified and trained in the optimization process.The predicted results of different molecular sys tems indica te that deep t ensor neural net work is capable to predic t the interaction energy with 1 kcal/mol of the mean absolute error in a relatively short time.The prediction highly improves the efficiency of interaction energy calculation.The whole proposed framework provides new insights to introducing deep learning technology into the interaction energy calculation.展开更多
We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su–Schrieffer–Heeger (SSH) model with a nonadiabatic dynamics method...We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su–Schrieffer–Heeger (SSH) model with a nonadiabatic dynamics method. It is found that a match between the Fermi level of electrodes and the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of organic molecules can be greatly affected by the length of the organic chains, which has a great impact on electron injection. The correlation between oligomers and electrodes is found to open more efficient channels for electron injection as compared with that in polymer/electrode structures. For oligomer/electrode structures, we show that the Schottky barrier essentially does not affect the electron injection as the electrode work function is smaller than a critical value. This means that the Schottky barrier is pinned for a small work-function electrode. For polymer/electrode structures, we find that it is possible for the Fermi level of electrodes to be pinned to the polaronic level. The condition under which the Fermi level of electrodes exceeds the polaronic level of polymers is shown to not always lead to spontaneous electron transfer from electrodes to polymers.展开更多
Electrocatalysis is a surface-sensitive process,in which the catalytic activity of electrocatalyst highly re-lates to the surface adsorption/desorption behaviors of the reactants/intermediates/products on the cat-alyt...Electrocatalysis is a surface-sensitive process,in which the catalytic activity of electrocatalyst highly re-lates to the surface adsorption/desorption behaviors of the reactants/intermediates/products on the cat-alytically active sites.Surface chemical microenvironment engineering via organic molecules functional-ization is a promising strategy to tune the electrocatalytic activity since it can well modify the elec-trode/electrolyte interface and alter the reaction pathways.In this review,we summarize the recent progress of surface microenvironment engineering of electrocatalysts induced by organic molecules func-tionalization,with the special focus on the organic molecule-assisted growth mechanism and unique electronic effect.More importantly,the applications of organic molecule functionalized catalysts in var-ious electrocatalytic reactions are also systematically summarized,along with a deep discussion on the conclusion and perspective.This work will open a new avenue for the construction and modification of advanced electrocatalysts based on organic molecule-mediated interface engineering.展开更多
Multicolor fluorescent probes based on small organic molecules have the advantages of low cost, good biocompatibility, easily modifiable molecular structures and adjustable fluorescence performance. In addition, small...Multicolor fluorescent probes based on small organic molecules have the advantages of low cost, good biocompatibility, easily modifiable molecular structures and adjustable fluorescence performance. In addition, small molecule multicolor fluorescent probes generally undergo multi-site or multi-step reactions, which means that they can be used for the specific detection of structurally similar substances in complex bio-systems. In this review, we focus on the design and application of multicolor fluorescent probes based on small organic molecules: single fluorophores with multiple reaction sites, multiple fluorophores with single reaction sites, or multiple fluorophores with multiple reaction sites. Moreover, a design strategy for multicolor fluorescent probes and its application in biological imaging are also summarized, providing a systematic plan for future research on fluorescent probes functionalized by small organic molecules. It will also play an important role in the development of additional functions for small organic molecule fluorescent probes.展开更多
In contrast to the widely reported excited-state single proton-transfer,excited-state multiple proton transfer(ESMPT)containing two or more intra-or inter-molecular proton transfers has greatly expanded the research s...In contrast to the widely reported excited-state single proton-transfer,excited-state multiple proton transfer(ESMPT)containing two or more intra-or inter-molecular proton transfers has greatly expanded the research scope of the excited-state proton transfers.In recent decades,ESMPT-active organic molecules have attracted much attention owing to their unique photophysical properties,such as large magnitude Stokes shifts and dual emission.These photophysical properties facilitate the application of the organic molecules in organic solid-state lasers,fluorescent probes and sensors,and molecular switches.Herein,we introduce the fundamentals of the ESMPT and review the recent advances in different types of ESMPTs in organic molecules.Finally,we present our conclusions and the future development prospects of the ESMPT in organic molecules.展开更多
Replacing traditional polymer-based precursors with small molecules is a promising pathway toward facile and controllable preparation of porous carbons but remains a prohibitive challenge because of the high volatilit...Replacing traditional polymer-based precursors with small molecules is a promising pathway toward facile and controllable preparation of porous carbons but remains a prohibitive challenge because of the high volatility of small molecules.Herein,a simple,general,and controllable method is reported to prepare porous carbons by converting small organic molecules into organic molecular salts followed by pyrolysis.The robust electrostatic force holding organic molecular salts together leads to negligible volatility and thus ensures the formation of carbons under high-temperature pyrolysis.Meanwhile,metal moieties in organic molecular salts can be evolved into in-situ templates or activators during pyrolysis to create nanopores.The modular nature of organic molecular salts allows easy control of the porosity and chemical doping of carbons at a molecular level.The sulfur-doped carbon prepared by the ionic solid strategy can serve as robust support to prepare small-sized intermetallic PtCo catalysts,which exhibit a high mass activity of 1.62 A·mgPt^(−1)in catalyzing oxygen reduction reaction for fuel cell applications.展开更多
Nature has provided us the assurance and inspiration for thousands of years in synthesizing value-added chemicals,with the assistance of reactive hydrogen species,and water as the ultimate hydrogen source.However,the ...Nature has provided us the assurance and inspiration for thousands of years in synthesizing value-added chemicals,with the assistance of reactive hydrogen species,and water as the ultimate hydrogen source.However,the natural photosynthesis is inefficient due to some intrinsic properties,urging people not only to learn from but also surpass during nature imitation.In this review,we summarized recent progresses on reactive hydrogen species-assisted nanocatalytic reduction of organic molecules towards value-added fine chemicals and pharmaceuticals,with water as the hydrogen source,and especially highlighted how photocatalytically or electrocatalytically evolved reactive hydrogen species synergize with biocatalytic centers and nanocatalytic sites for reduction of organic molecules.The design principles of collaborative semi-artificial systems and nanocatalytic artificial systems,the structure tuning of catalysts for the evolution and utilization of hydrogen species,and the determination of reactive hydrogen species for mechanistic insights were discussed in detail.Finally,perspectives were provided for further advancing this emerging area of nanocatalytic reduction of organic molecules from water(or proton)and organics.展开更多
We have synthesized two photovoltaic molecules(HEX-3TVT-ID and EH-3TVT-ID) based on vinylenebridged oligothiophene applied as donor for the solution-processable bulk-heterojunction organic solar cells(OSCs). Vinyl...We have synthesized two photovoltaic molecules(HEX-3TVT-ID and EH-3TVT-ID) based on vinylenebridged oligothiophene applied as donor for the solution-processable bulk-heterojunction organic solar cells(OSCs). Vinylene unit was introduced as π-bridge in the oligothiophenes with 1,3-indenedione as end group and 4,4’-dihexyl-2,2’:5’,2’-terthiophene or 3’,4’-di(octan-3-yl)-2,2’:5’,2’-terthiophene as core,respectively. Due to the different substituent positions of the alkyl group relative to the vinylene unit in the terthiophene, HEX-3TVT-ID and EH-3TVT-ID show different optical and electrochemical properties, corresponding to the photovoltaic performance of the OSCs devices. The power conversion efficiency(PCE) of the OSCs based on a blend of HEX-3TVT-ID and PC71BM(1:0.8, weight ratio, 0.5% CN) reached 2.3%. In comparison, the OSCs based on the blend of EH-3TVT-ID and PC71BM in the weight ratio of 1:1 without the additive show a higher PCE of 2.7%, with a typically high VOC of 0.93 V, under the illumination of AM 1.5, 100 mW cm-2.展开更多
BrCF_2SO_2Br, prepared from sulfinatodehalogenation of CF_2Br_2 followed by bromination of the intermediate BrCF_2SO_2Na, was shown to be a mild and efficient bromodifluoromethylating agent.
With the support by the Major Program of the National Natural Science Foundation of China,a research group led by Prof.Shen Zhiqiang(沈志强)from Shanghai Astronomical Observatory,Chinese Academy of Sciences reports ...With the support by the Major Program of the National Natural Science Foundation of China,a research group led by Prof.Shen Zhiqiang(沈志强)from Shanghai Astronomical Observatory,Chinese Academy of Sciences reports the detection of widespread CH2OHCHO(glycolaldehyde) and展开更多
Small molecule organic photovoltaics(SMPVs) were prepared by utilizing liquid crystalline donor material BTR-Cl and two similar optical bandgap non-fullerene acceptor materials BTP-BO-4 F and Y6.The BTPBO-4 F and Y6 h...Small molecule organic photovoltaics(SMPVs) were prepared by utilizing liquid crystalline donor material BTR-Cl and two similar optical bandgap non-fullerene acceptor materials BTP-BO-4 F and Y6.The BTPBO-4 F and Y6 have the similar optical bandgap and different absorption coefficients.The corresponding binary SMPVs exhibit different short circuit current density(/sc)(20.38 vs.23.24 mA cm^(-2)),and fill factor(FF)(70.77% vs.67.21%).A 14.46% power conversion efficiency(PCE) is acquired in ternary SMPVs with 30 wt% Y6,companied with a JSC of 24.17 mA cm^(-2) a FF of 68.78% and an open circuit voltage(Voc) of 0.87 V.The improvement on PCE of ternary SMPVs should originate from the well trade-off between phase separation and photon harvesting of ternary active layers by incorporating 30 wt% Y6 in acceptors.This work may deliver insight onto the improved performance of SMPVs by superposing the superiorities of binary SMPVs with similar optical bandgap acceptors into one ternary cell.展开更多
Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making t...Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making them very viable contenders for large-scale grid storage applications.Considerable attention has been paid on the development of efficient redox-active molecules and their performance optimization through chemical substitutions at various places on the backbone as part of the pursuit for high-performance RFBs.Despite the fact that electrodes are vital to optimal performance,they have not garnered significant attention.Limited research has been conducted on the effects of electrode modifications to improve the performance of RFBs.The primary emphasis has been given on the impact of electrode engineering to augment the efficiency of aqueous organic RFBs.An overview of electron transfer at the electrode-electrolyte interface is provided.The implications of electrode modification on the performance of redox flow batteries,with a particular focus on the anodic and cathodic half-cells separately,are then discussed.In each section,significant discrepancies surrounding the effects of electrode engineering are thoroughly examined and discussed.Finally,we have presented a comprehensive assessment along with our perspectives on the future trajectory.展开更多
[Objective] The aim was to construct a plasmid reference molecule (PRM) for detection of transgenic soybean MON89788. [Method] the lectin gene sequence,3'-junction and 5'-junction sequence between host plant D...[Objective] The aim was to construct a plasmid reference molecule (PRM) for detection of transgenic soybean MON89788. [Method] the lectin gene sequence,3'-junction and 5'-junction sequence between host plant DNA integrated DNA of MON89788 soybean were amplified independently,and the three fragments were cloned into the cloning vector pMD18-T in order through molecular manipulation method to construct pMD-LM3M5,the applicability of the constructed novel PRM was tested. [Result] Sequencing confirmation result showed that the PRM was 3 700 bp in length,containing 1 029 bp of recombined DNA fragment. The limits of qualitative detection of the PRM were 10 copies. [Conclusion] The PRM constructed in this study was suitable for the identification of MON89788 event.展开更多
Aggregation effect caused by the intermolecular hydrogen-bonding interactions on two-photon absorption prop- erties of (E)-4-(2-nitrovinyl) benzenamine molecules is studied at a hybrid density functional level. Th...Aggregation effect caused by the intermolecular hydrogen-bonding interactions on two-photon absorption prop- erties of (E)-4-(2-nitrovinyl) benzenamine molecules is studied at a hybrid density functional level. The geometry optimization studies indicate that there exist two probable conformations for the dimers and three for the trimers. A strong red-shift of the charge-transfer states is shown. The two-photon absorption cross sections of the molecule for certain conformations are greatly enhanced by the aggregation effect, from which a ratio of 1.0:2.6:3.6 is found for the molecule and its dimer and trimer with nearly planar structures. Namely, a 30 or 20 percent increase of the two-photon absorption cross section is observed.展开更多
Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule ...Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule deposition. Taking advantage of this system, we investigate TCNQ thin film growth on both SiO2 and mica surfaces. It is found that dense island patterns form at a high deposition rate, and a unique seahorse-like pattern forms at a low deposition rate. Growth patterns on different substrates suggest that the fractal pattern formation is dominated by molecule-molecule interaction. Finally, a phenomenal "two-branch" model is proposed to simulate the growth process of the seahorse pattern.展开更多
For flow batteries(FBs), the current technologies are still expensive and have relatively low energy density, which limits their large-scale applications. Organic FBs(OFBs) which employ organic molecules as redox-acti...For flow batteries(FBs), the current technologies are still expensive and have relatively low energy density, which limits their large-scale applications. Organic FBs(OFBs) which employ organic molecules as redox-active materials have been considered as one of the promising technologies for achieving lowcost and high-performance. Herein, we present a critical overview of the progress on the OFBs, including the design principles of key components(redox-active molecules, membranes, and electrodes) and the latest achievement in both aqueous and nonaqueous systems. Finally, future directions in explorations of the high-performance OFB for electrochemical energy storage are also highlighted.展开更多
An organic small molecule additive zinc formate is introduced to construct stable Zn metal interphase by electrochemical kinetic control and thermodynamic adjustment.It partially forms a water-formate concomitant dipo...An organic small molecule additive zinc formate is introduced to construct stable Zn metal interphase by electrochemical kinetic control and thermodynamic adjustment.It partially forms a water-formate concomitant dipole layer at the internal Helmholtz electrical double layers(HEDLs) under the preferential adsorption function of formate on Zn surface,reducing the occurrence of side reactions at phase interface.Meanwhile,free formate in HEDLs regulates the Zn^(2+) solvation sheath structure to accelerate the desolvation,transference,and deposition kinetics of Zn^(2+).Besides,the hydrolysis reaction of zinc formate increases the hydrogen evolution overpotential,inhibiting the thermodynamic tendency of hydrogen evolution.Consequently,it presents stable cycle for more than 2400 h at 5 mA cm^(-2),as well as an average Coulombic efficiency of 99.8% at 1 A g^(-1) after 800 cycles in the Zn‖VO_(2) full cell.The interphase engineering strategy zinc anode by organic small molecular brings new possibility towards high-performance aqueous zinc-ion batteries.展开更多
Hydrazine,an essential chemical,has been used within a wide spectrum of industries,including pesticides,pharmaceuticals and even satellite-launching systems.However,the excessive consumption of hydrazine raised the ri...Hydrazine,an essential chemical,has been used within a wide spectrum of industries,including pesticides,pharmaceuticals and even satellite-launching systems.However,the excessive consumption of hydrazine raised the risk of environmental pollution accidents and occurrence of diseases because of its high toxicity and volatility.This led to the discovery of diverse fluorescent probes for the monitoring of the dangerous substance,including those based on organic small molecules and emerging nanomaterials.Herein,we are going to present a comprehensive review of recently reported hydrazine fluorescent probes,and discuss their structure design strategies and detection mechanisms.In particular,both organic small-molecule and nanomaterial fluorescent probes for hydrazine will be discussed together for the first time.展开更多
Organic electrode molecules hold significant potential as the next generation of cathode materials for Li-ion batteries. In this study, we have introduced a multi-objective active learning framework that leverages Bay...Organic electrode molecules hold significant potential as the next generation of cathode materials for Li-ion batteries. In this study, we have introduced a multi-objective active learning framework that leverages Bayesian optimization and non-dominated sorting genetic algorithms-Ⅱ. This framework enables the selection of organic molecules characterized by high theoretical energy density and low gap(LUMO-HOMO)(LUMO, lowest unoccupied molecular orbital;HOMO, highest occupied molecular orbital). Remarkably, after only two cycles of active learning, the determination of coefficient can reach 0.962 for theoretical energy density and 0.920 for the gap with a modest dataset of 300 molecules, showcasing superior predictive capabilities. The 2,3,5,6-tetrafluorocyclohexa-2,5-diene-1,4-dione, selected by non-dominated sorting genetic algorithms-Ⅱ, has been successfully applied to Li-ion batteries as cathode materials, demonstrating a high capacity of 288 m Ah g^(-1)and a long cycle life of 1,000 cycles. This outcome underscores the high reliability of our framework. Furthermore, we have also validated the universality and transferability of our framework by applying it to two additional databases, the QM9 and OMEAD. When the training dataset of the model includes at least 500 molecules, the determination of coefficient essentially reaches approximately0.900 for four targets: gap, reduction potential, LUMO, and HOMO. Therefore, the universal framework in our work provides innovative insights applicable to other domains to expedite the screening process for target materials.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 20974101 and 21174135)
文摘We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su Schrieffer Heeger (SSH) model with a nonadiabatic dynamics method. It is found that a match between the Fermi level of electrodes and the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of organic molecules can be greatly affected by the length of the organic chains, which has a great impact on electron injection. The correlation between oligomers and electrodes is found to open more efficient channels for electron injection as compared with that in polymer/electrode structures. For oligomer/electrode structures, we show that the Schottky barrier essentially does not affect the electron injection as the electrode work function is smaller than a critical value work-function electrode. For polymer/electrode structures This means that the Schottky barrier is pinned for a small we find that it is possible for the Fermi level of electrodes to be pinned to the polaronic level. The condition under which the Fermi level of electrodes exceeds the polaronic level of polymers is shown to not always lead to spontneous electron transfer from electrodes to polymers.
基金This work was supported by the National Natural Science Foundation of China(No.21933010 to Guo-hui Li).
文摘The interaction energy of two molecules system plays a critical role in analyzing the interacting effect in molecular dynamic simulation.Since the limitation of quantum mechanics calculating resources,the interaction energy based on quantum mechanics can not be merged into molecular dynamic simulation for a long time scale.A deep learning framework,deep tensor neural network,is applied to predict the interaction energy of three organic related systems within the quantum mechanics level of accuracy.The geometric structure and atomic types of molecular conformation,as the data descriptors,are applied as the network inputs to predict the interaction energy in the system.The neural network is trained with the hierarchically generated conformations data set.The complex tensor hidden layers are simplified and trained in the optimization process.The predicted results of different molecular sys tems indica te that deep t ensor neural net work is capable to predic t the interaction energy with 1 kcal/mol of the mean absolute error in a relatively short time.The prediction highly improves the efficiency of interaction energy calculation.The whole proposed framework provides new insights to introducing deep learning technology into the interaction energy calculation.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 20974101 and 21174135)
文摘We numerically investigate the injection process of electrons from metal electrodes to one-dimensional organic molecules by combining the extended Su–Schrieffer–Heeger (SSH) model with a nonadiabatic dynamics method. It is found that a match between the Fermi level of electrodes and the highest occupied molecular orbital (HOMO) or the lowest unoccupied molecular orbital (LUMO) of organic molecules can be greatly affected by the length of the organic chains, which has a great impact on electron injection. The correlation between oligomers and electrodes is found to open more efficient channels for electron injection as compared with that in polymer/electrode structures. For oligomer/electrode structures, we show that the Schottky barrier essentially does not affect the electron injection as the electrode work function is smaller than a critical value. This means that the Schottky barrier is pinned for a small work-function electrode. For polymer/electrode structures, we find that it is possible for the Fermi level of electrodes to be pinned to the polaronic level. The condition under which the Fermi level of electrodes exceeds the polaronic level of polymers is shown to not always lead to spontaneous electron transfer from electrodes to polymers.
基金supported by the Key Research&Development and Promotion Projects in Henan Province(No.232102230079).
文摘Electrocatalysis is a surface-sensitive process,in which the catalytic activity of electrocatalyst highly re-lates to the surface adsorption/desorption behaviors of the reactants/intermediates/products on the cat-alytically active sites.Surface chemical microenvironment engineering via organic molecules functional-ization is a promising strategy to tune the electrocatalytic activity since it can well modify the elec-trode/electrolyte interface and alter the reaction pathways.In this review,we summarize the recent progress of surface microenvironment engineering of electrocatalysts induced by organic molecules func-tionalization,with the special focus on the organic molecule-assisted growth mechanism and unique electronic effect.More importantly,the applications of organic molecule functionalized catalysts in var-ious electrocatalytic reactions are also systematically summarized,along with a deep discussion on the conclusion and perspective.This work will open a new avenue for the construction and modification of advanced electrocatalysts based on organic molecule-mediated interface engineering.
基金This work was supported by the National Natural Science Foundation of China(21672131,21775096)One Hundred People Plan of Shanxi Province,Shanxi Province“1331 Project”Key Innovation Team Construction Plan Cultivation Team(2018-CT-1)+7 种基金2018 Xiangyuan County Solid Waste Comprehensive Utilization Science and Technology Project(2018XYSDJS-05)Shanxi Province Foundation for Returness(2017-026)Shanxi Collaborative Innovation Center of High Value-added Utilization of Coal-related Wastes(2015-10-B3)the Shanxi Province Foundation for Selected(No.2019)the Innovative Talents of Higher Education Institutions of Shanxi,Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi(2019L0031)the Key R&D Program of Shanxi Province(201903D421069)the Shanxi Province Science Foundation(201901D111015)China Institute for Radiation Production and Scientific Instrument Center of Shanxi University(201512).
文摘Multicolor fluorescent probes based on small organic molecules have the advantages of low cost, good biocompatibility, easily modifiable molecular structures and adjustable fluorescence performance. In addition, small molecule multicolor fluorescent probes generally undergo multi-site or multi-step reactions, which means that they can be used for the specific detection of structurally similar substances in complex bio-systems. In this review, we focus on the design and application of multicolor fluorescent probes based on small organic molecules: single fluorophores with multiple reaction sites, multiple fluorophores with single reaction sites, or multiple fluorophores with multiple reaction sites. Moreover, a design strategy for multicolor fluorescent probes and its application in biological imaging are also summarized, providing a systematic plan for future research on fluorescent probes functionalized by small organic molecules. It will also play an important role in the development of additional functions for small organic molecule fluorescent probes.
基金financially supported by the National Natural Science Foundation of China (52173177,21971185,22105139)China Postdoctoral Science Foundation (2020M681707)+1 种基金funded by the Collaborative Innovation Center of Suzhou Nano Science and Technology (CIC-Nano)by the “111” Project of the State Administration of Foreign Experts Affairs of China
文摘In contrast to the widely reported excited-state single proton-transfer,excited-state multiple proton transfer(ESMPT)containing two or more intra-or inter-molecular proton transfers has greatly expanded the research scope of the excited-state proton transfers.In recent decades,ESMPT-active organic molecules have attracted much attention owing to their unique photophysical properties,such as large magnitude Stokes shifts and dual emission.These photophysical properties facilitate the application of the organic molecules in organic solid-state lasers,fluorescent probes and sensors,and molecular switches.Herein,we introduce the fundamentals of the ESMPT and review the recent advances in different types of ESMPTs in organic molecules.Finally,we present our conclusions and the future development prospects of the ESMPT in organic molecules.
基金We acknowledge the funding support from the National Key Research and Development Program of China(No.2018YFA0702001)the National Natural Science Foundation of China(No.22071225)+6 种基金the Fundamental Research Funds for the Central Universities(No.WK2060190103)the Joint Funds from Hefei National Synchrotron Radiation Laboratory(No.KY2060000175)the Natural Science Foundation of Guangdong Province(No.2021A1515012356)the Research Grant for Scientific Platform and Project of Guangdong Provincial Education office(No.2019KTSCX151)Shenzhen Government’s Plan of Science and Technology(No.JCYJ20180305125247308)the Collaborative Innovation Program of Hefei Science Center of CAS(No.2021HSC-CIP015)L.D.F.acknowledges the support from the Instrumental Analysis Center of Shenzhen University(Xili Campus).
文摘Replacing traditional polymer-based precursors with small molecules is a promising pathway toward facile and controllable preparation of porous carbons but remains a prohibitive challenge because of the high volatility of small molecules.Herein,a simple,general,and controllable method is reported to prepare porous carbons by converting small organic molecules into organic molecular salts followed by pyrolysis.The robust electrostatic force holding organic molecular salts together leads to negligible volatility and thus ensures the formation of carbons under high-temperature pyrolysis.Meanwhile,metal moieties in organic molecular salts can be evolved into in-situ templates or activators during pyrolysis to create nanopores.The modular nature of organic molecular salts allows easy control of the porosity and chemical doping of carbons at a molecular level.The sulfur-doped carbon prepared by the ionic solid strategy can serve as robust support to prepare small-sized intermetallic PtCo catalysts,which exhibit a high mass activity of 1.62 A·mgPt^(−1)in catalyzing oxygen reduction reaction for fuel cell applications.
基金the financial support of the National Natural Science Foundation of China(Nos.22102102,21805191 and 21972094)China Postdoctoral Science Foundation(No.2021T140472)+4 种基金Guangdong Basic and Applied Basic Research Foundation(No.2020A1515010982)Educational Commission of Guangdong Province(No.839-0000013131)Shenzhen Stable Support Project(Nos.20200812160737002 and 20200812122947002)Shenzhen Peacock Plan(Nos.KQTD2016053112042971,20210308299C,20180921273B,20210802524B,and 827-000421)Shenzhen Science and Technology Program(Nos.JCYJ20190808142001745 and RCJC20200714114434086)。
文摘Nature has provided us the assurance and inspiration for thousands of years in synthesizing value-added chemicals,with the assistance of reactive hydrogen species,and water as the ultimate hydrogen source.However,the natural photosynthesis is inefficient due to some intrinsic properties,urging people not only to learn from but also surpass during nature imitation.In this review,we summarized recent progresses on reactive hydrogen species-assisted nanocatalytic reduction of organic molecules towards value-added fine chemicals and pharmaceuticals,with water as the hydrogen source,and especially highlighted how photocatalytically or electrocatalytically evolved reactive hydrogen species synergize with biocatalytic centers and nanocatalytic sites for reduction of organic molecules.The design principles of collaborative semi-artificial systems and nanocatalytic artificial systems,the structure tuning of catalysts for the evolution and utilization of hydrogen species,and the determination of reactive hydrogen species for mechanistic insights were discussed in detail.Finally,perspectives were provided for further advancing this emerging area of nanocatalytic reduction of organic molecules from water(or proton)and organics.
基金supported by the National Natural Science Foundation of China (51272033, 51572037, 51603021)333 Project of Jiangsu Province (BRA2017353)the Priority Academic Program Development of Jiangsu Higher Education Institutions and Anhui Provincial Natural Science Foundation (1608085QF156)
文摘We have synthesized two photovoltaic molecules(HEX-3TVT-ID and EH-3TVT-ID) based on vinylenebridged oligothiophene applied as donor for the solution-processable bulk-heterojunction organic solar cells(OSCs). Vinylene unit was introduced as π-bridge in the oligothiophenes with 1,3-indenedione as end group and 4,4’-dihexyl-2,2’:5’,2’-terthiophene or 3’,4’-di(octan-3-yl)-2,2’:5’,2’-terthiophene as core,respectively. Due to the different substituent positions of the alkyl group relative to the vinylene unit in the terthiophene, HEX-3TVT-ID and EH-3TVT-ID show different optical and electrochemical properties, corresponding to the photovoltaic performance of the OSCs devices. The power conversion efficiency(PCE) of the OSCs based on a blend of HEX-3TVT-ID and PC71BM(1:0.8, weight ratio, 0.5% CN) reached 2.3%. In comparison, the OSCs based on the blend of EH-3TVT-ID and PC71BM in the weight ratio of 1:1 without the additive show a higher PCE of 2.7%, with a typically high VOC of 0.93 V, under the illumination of AM 1.5, 100 mW cm-2.
文摘BrCF_2SO_2Br, prepared from sulfinatodehalogenation of CF_2Br_2 followed by bromination of the intermediate BrCF_2SO_2Na, was shown to be a mild and efficient bromodifluoromethylating agent.
文摘With the support by the Major Program of the National Natural Science Foundation of China,a research group led by Prof.Shen Zhiqiang(沈志强)from Shanghai Astronomical Observatory,Chinese Academy of Sciences reports the detection of widespread CH2OHCHO(glycolaldehyde) and
基金the financial supporting from the NSFC(61975006,61675017)NSFRPSI(Y72Z090Q10)+3 种基金the NSFCQ(cstc2019jcyj-msxm X0400)the NYTPP(R52A199Z11)the YIPACAS(E0296104)the BNSF(4192049)。
文摘Small molecule organic photovoltaics(SMPVs) were prepared by utilizing liquid crystalline donor material BTR-Cl and two similar optical bandgap non-fullerene acceptor materials BTP-BO-4 F and Y6.The BTPBO-4 F and Y6 have the similar optical bandgap and different absorption coefficients.The corresponding binary SMPVs exhibit different short circuit current density(/sc)(20.38 vs.23.24 mA cm^(-2)),and fill factor(FF)(70.77% vs.67.21%).A 14.46% power conversion efficiency(PCE) is acquired in ternary SMPVs with 30 wt% Y6,companied with a JSC of 24.17 mA cm^(-2) a FF of 68.78% and an open circuit voltage(Voc) of 0.87 V.The improvement on PCE of ternary SMPVs should originate from the well trade-off between phase separation and photon harvesting of ternary active layers by incorporating 30 wt% Y6 in acceptors.This work may deliver insight onto the improved performance of SMPVs by superposing the superiorities of binary SMPVs with similar optical bandgap acceptors into one ternary cell.
基金the financial support received from Interdisciplinary Research Center for Hydrogen Technologies and Carbon Management(IRC-HTCM)at King Fahd University of Petroleum and Minerals(KFUPM),specifically under project#INHE2213。
文摘Aqueous organic redox flow batteries(RFBs)exhibit favorable characteristics,such as tunability,multielectron transfer capability,and stability of the redox active molecules utilized as anolytes and catholytes,making them very viable contenders for large-scale grid storage applications.Considerable attention has been paid on the development of efficient redox-active molecules and their performance optimization through chemical substitutions at various places on the backbone as part of the pursuit for high-performance RFBs.Despite the fact that electrodes are vital to optimal performance,they have not garnered significant attention.Limited research has been conducted on the effects of electrode modifications to improve the performance of RFBs.The primary emphasis has been given on the impact of electrode engineering to augment the efficiency of aqueous organic RFBs.An overview of electron transfer at the electrode-electrolyte interface is provided.The implications of electrode modification on the performance of redox flow batteries,with a particular focus on the anodic and cathodic half-cells separately,are then discussed.In each section,significant discrepancies surrounding the effects of electrode engineering are thoroughly examined and discussed.Finally,we have presented a comprehensive assessment along with our perspectives on the future trajectory.
基金Supported by Major Projects of Cultivating New Varieties by Trans-genic Technology (2008ZX08012-001)~~
文摘[Objective] The aim was to construct a plasmid reference molecule (PRM) for detection of transgenic soybean MON89788. [Method] the lectin gene sequence,3'-junction and 5'-junction sequence between host plant DNA integrated DNA of MON89788 soybean were amplified independently,and the three fragments were cloned into the cloning vector pMD18-T in order through molecular manipulation method to construct pMD-LM3M5,the applicability of the constructed novel PRM was tested. [Result] Sequencing confirmation result showed that the PRM was 3 700 bp in length,containing 1 029 bp of recombined DNA fragment. The limits of qualitative detection of the PRM were 10 copies. [Conclusion] The PRM constructed in this study was suitable for the identification of MON89788 event.
基金Project supported by the National Basic Research Program of China (Grant No. 2006CB806000)the Open Fund of the State Key Laboratory of High Field Laser Physics (Shanghai Institute of Optics and Fine Mechanics)the National Natural Science Foundation of China (Grant No. 10974121)
文摘Aggregation effect caused by the intermolecular hydrogen-bonding interactions on two-photon absorption prop- erties of (E)-4-(2-nitrovinyl) benzenamine molecules is studied at a hybrid density functional level. The geometry optimization studies indicate that there exist two probable conformations for the dimers and three for the trimers. A strong red-shift of the charge-transfer states is shown. The two-photon absorption cross sections of the molecule for certain conformations are greatly enhanced by the aggregation effect, from which a ratio of 1.0:2.6:3.6 is found for the molecule and its dimer and trimer with nearly planar structures. Namely, a 30 or 20 percent increase of the two-photon absorption cross section is observed.
基金Project supported by the National Natural Science Foundation of China(Grant No.10774176)the National Basic Research Program of China(Grant No.2006CB806202)
文摘Deposition patterns of tetracyanoquinodimethane (TCNQ) molecules on different surfaces are investigated by atomic force microscopy. A homemade physical vapour deposition system allows the better control of molecule deposition. Taking advantage of this system, we investigate TCNQ thin film growth on both SiO2 and mica surfaces. It is found that dense island patterns form at a high deposition rate, and a unique seahorse-like pattern forms at a low deposition rate. Growth patterns on different substrates suggest that the fractal pattern formation is dominated by molecule-molecule interaction. Finally, a phenomenal "two-branch" model is proposed to simulate the growth process of the seahorse pattern.
基金supported by the China Natural Science Foundation(U1808209)the CAS-DOE program,CAS(QYZDB-SSWJSC032)+1 种基金the Key R&D project of Dalian(2018YF17GX020)the DICP funding(ZZBS201707)。
文摘For flow batteries(FBs), the current technologies are still expensive and have relatively low energy density, which limits their large-scale applications. Organic FBs(OFBs) which employ organic molecules as redox-active materials have been considered as one of the promising technologies for achieving lowcost and high-performance. Herein, we present a critical overview of the progress on the OFBs, including the design principles of key components(redox-active molecules, membranes, and electrodes) and the latest achievement in both aqueous and nonaqueous systems. Finally, future directions in explorations of the high-performance OFB for electrochemical energy storage are also highlighted.
基金supported by the National Natural Science Foundation of China (Grant Nos. 52072322, 51604250)the Sichuan Science and Technology Program, China (Grant Nos. 2022YFG0294, 2019-GH02-00052-HZ)the Undergraduate Innovation and Entrepreneurship Program (S202210615189)。
文摘An organic small molecule additive zinc formate is introduced to construct stable Zn metal interphase by electrochemical kinetic control and thermodynamic adjustment.It partially forms a water-formate concomitant dipole layer at the internal Helmholtz electrical double layers(HEDLs) under the preferential adsorption function of formate on Zn surface,reducing the occurrence of side reactions at phase interface.Meanwhile,free formate in HEDLs regulates the Zn^(2+) solvation sheath structure to accelerate the desolvation,transference,and deposition kinetics of Zn^(2+).Besides,the hydrolysis reaction of zinc formate increases the hydrogen evolution overpotential,inhibiting the thermodynamic tendency of hydrogen evolution.Consequently,it presents stable cycle for more than 2400 h at 5 mA cm^(-2),as well as an average Coulombic efficiency of 99.8% at 1 A g^(-1) after 800 cycles in the Zn‖VO_(2) full cell.The interphase engineering strategy zinc anode by organic small molecular brings new possibility towards high-performance aqueous zinc-ion batteries.
基金support from the National Natural Science Foundation of China(21977082 and 22037002)the Natural Science Basic Research Program of Shaanxi(2020JC-38).
文摘Hydrazine,an essential chemical,has been used within a wide spectrum of industries,including pesticides,pharmaceuticals and even satellite-launching systems.However,the excessive consumption of hydrazine raised the risk of environmental pollution accidents and occurrence of diseases because of its high toxicity and volatility.This led to the discovery of diverse fluorescent probes for the monitoring of the dangerous substance,including those based on organic small molecules and emerging nanomaterials.Herein,we are going to present a comprehensive review of recently reported hydrazine fluorescent probes,and discuss their structure design strategies and detection mechanisms.In particular,both organic small-molecule and nanomaterial fluorescent probes for hydrazine will be discussed together for the first time.
基金supported by the National Key R&D Program of China (2022YFB2402200)the National Natural Science Foundation of China (92372206, 52271140, 52171194)+2 种基金the Jilin Province Science and Technology Development Plan Funding Project (YDZJ202301ZYTS545)the National Natural Science Foundation of China Excellent Young Scientists (Overseas)the Youth Innovation Promotion Association CAS (2020230)。
文摘Organic electrode molecules hold significant potential as the next generation of cathode materials for Li-ion batteries. In this study, we have introduced a multi-objective active learning framework that leverages Bayesian optimization and non-dominated sorting genetic algorithms-Ⅱ. This framework enables the selection of organic molecules characterized by high theoretical energy density and low gap(LUMO-HOMO)(LUMO, lowest unoccupied molecular orbital;HOMO, highest occupied molecular orbital). Remarkably, after only two cycles of active learning, the determination of coefficient can reach 0.962 for theoretical energy density and 0.920 for the gap with a modest dataset of 300 molecules, showcasing superior predictive capabilities. The 2,3,5,6-tetrafluorocyclohexa-2,5-diene-1,4-dione, selected by non-dominated sorting genetic algorithms-Ⅱ, has been successfully applied to Li-ion batteries as cathode materials, demonstrating a high capacity of 288 m Ah g^(-1)and a long cycle life of 1,000 cycles. This outcome underscores the high reliability of our framework. Furthermore, we have also validated the universality and transferability of our framework by applying it to two additional databases, the QM9 and OMEAD. When the training dataset of the model includes at least 500 molecules, the determination of coefficient essentially reaches approximately0.900 for four targets: gap, reduction potential, LUMO, and HOMO. Therefore, the universal framework in our work provides innovative insights applicable to other domains to expedite the screening process for target materials.