In some organic materials, varying the finite distance between adjacent carrier traps modifies the Coulomb potential around each trap, resulting in a more complex field-dependence of mobility, differing from (but not...In some organic materials, varying the finite distance between adjacent carrier traps modifies the Coulomb potential around each trap, resulting in a more complex field-dependence of mobility, differing from (but not incompatible with) the usually considered relationship of ln μ∝√E ,a relationship which has been successfully explained by the Poole-Frenkel effect. To investigate the influence of the adjacency of traps, a model system is proposed, which consists of two traps separated by distance α. Our numerical calculation shows that with increasing α, the dependence of mobility on the electric field changes from linear to exponential. Moreover, beyond a certain large α, i.e., as the distance to the nearest trap approaches infinity, the proposed model is essentially the same as the Poole-Frenkel effect. The proposed model accounts for the effect of the energy barrier shape, especially the effect of the location of the potential-energy maximum, a phenomenon which is not accommodated in the Poole-Frenkel model. Because the model assumes the Coulomb interaction between the adjacent traps, it applies to those charged traps which may exist in organic materials for various reasons.展开更多
The object of the study was fungous diseases occurring on roots, leave sheaths and stem base of winter wheat in the two opposing cropping systems (organic and conventional). The observations were made in vegetation pe...The object of the study was fungous diseases occurring on roots, leave sheaths and stem base of winter wheat in the two opposing cropping systems (organic and conventional). The observations were made in vegetation periods (2007-2009) in the fields of winter wheat in northern Poland. Every year on each plot of compared farming systems root rot occurred (Fusarium spp., Gaeumannomyces graminis and other fungi). For the period of 3 years the degree of disease injury on the roots of winter wheat grown in the conventional system in the vegetation period increased, while in the organic one remained on pretty the same level. On average a lot more affected roots, especially in the flowering stage, occurred on the winter wheat grown in the conventional system. Fusarium foot rot (Fusarium spp.) developed on the wheat during the entire vegetation period. It was the most dangerous root and foot rot disease (the highest indexes of injury). The mean degree of disease injury on leave sheath was on pretty the same level in the two farming systems, although in investigated vegetation periods differed a lot, whereas at the bases of stems the pathogen was on the higher level on the wheat in the conventional system. Also eyespot (Tapesia yallude) developed in the entire vegetation period of the winter wheat, but its intensity was much lower than in case of fusarium foot rot. Leave sheaths of the wheat grown in the conventional system were slightly stronger affected than those grown in the organic system. In the flowering stage the intensity of the disease in both farming systems became equal, while in the wax maturity it was considerably higher in the conventional system. Sharp eyespot (Rhizoctonia spp.) appeared relatively late and occurred only in two years of investigation. The intensiveness of the disease was definitely higher on the organic plots. Among the affected roots, taken in the stem elongation stage, from the organic system 28 cultures of fungi were isolated, and from the conventional one 24 colonies. Cereals pathogenic fungi amounted 35.8% of isolates obtained from the organic system and as many as 66.7% from the conventional system. Among the affected roots, taken in the flowering stage, from the organic system 68 cultures of fungi were isolated in all, and from the conventional one 25 colonies. Cereals pathogenic fungi amounted 38.2% of isolates obtained from the organic system and 56.0% from the conventional system. Among the affected stem bases, taken in the wax maturity stage, from the organic system 56 cultures of fungi were isolated in all, and from the conventional one 52 colonies. Cereals pathogenic fungi amounted 48.4% of isolates obtained from the organic system and 53.6% from the conventional system. In the case of all root and foot rot diseases of wheat grown in the organic system, an advantageous influence of greater biodiversity and number of various fungi species living in root proximity was noticed as opposed to the conventional system.展开更多
Materials with a high on-off resistance ratio could become the basis for resistive random-access memory (RRAM). It is assumed that one of RRAM types can be based on hybrid organic-inorganic systems, while particular a...Materials with a high on-off resistance ratio could become the basis for resistive random-access memory (RRAM). It is assumed that one of RRAM types can be based on hybrid organic-inorganic systems, while particular attention is focused on hybrid systems consisting of metal nanoparticles (NP) embedded in organic matrix (OM). In this investigation we created and studied the hybrid organic-inorganic systems made of metal (Ag) nanoparticles embedded in organic semiconductor material CuPc. The LEED patterns and NEXAFS data demonstrate that the CuPc films deposited on Au(001) substrate are highly ordered and molecular planes lie parallel to the gold surface. The metal atoms were deposited on the outer surface of the organic molecular film and self-assembled into nanoparticles due to surface and bulk diffusion. The properties of nano-composite materials seem to be significantly dependent on the microstructure, i.e. the size, concentration, bulk- and size-distribution of nanoparticles;therefore we have studied by high resolution transmission electron microscopy the evolution of morphology of nano-composite films as a function of nominal metal deposition. The filled and empty electronic states of the hybrid organic-inorganic systems, energy level alignment at interfaces formed between metal nanoparticles and the organic semiconductor CuPc as well as the chemical interaction at the NP/OM interface were studied by UPS, XPS and NEXAFS methods.展开更多
The existence and risk of emerging organic contaminants(EOCs)have been under consideration and paid much effort to degrade these pollutants.Fenton system is one of the most widely used technologies to solve this probl...The existence and risk of emerging organic contaminants(EOCs)have been under consideration and paid much effort to degrade these pollutants.Fenton system is one of the most widely used technologies to solve this problem.The original Fenton system relies on the hydroxyl radicals produced by Fe(Ⅱ)/H_(2)O_(2) to oxidize the organic contaminants.However,the application of the Fenton system is limited by its low iron cycling efficiency and the high risks of hydrogen peroxide transportation and storage.The introduction of external energy(including light and electricity etc.)can effectively promote the Fe(Ⅲ)/Fe(Ⅱ)cycle and the reduction of oxygen to produce hydrogen peroxide in situ.This review introduces three in-situ Fenton systems,which are electro-Fenton,Photo-Fenton,and chemical reaction.The mechanism,influencing factors,and catalysts of these three in-situ Fenton systems in degrading EOCs are discussed systematically.This review strengthens the understanding of Fenton and in-situ Fenton systems in degradation,offering further insight into the real application of the in-situ Fenton system in the removal of EOCs.展开更多
The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and...The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and process signals in a parallel way,thus improving fault tolerance and decreasing the power consumption of artificial systems.The organic field effect transistor(OFET)is a promising component for bioinspired neuromorphic systems because it is suitable for large-scale integrated circuits and flexible devices.In this review,the organic semiconductor materials,structures and fabrication,and different artificial sensory perception systems functions based on neuromorphic OFET devices are summarized.Subsequently,a summary and challenges of neuromorphic OFET devices are provided.This review presents a detailed introduction to the recent progress of neuromorphic OFET devices from semiconductor materials to perception systems,which would serve as a reference for the development of neuromorphic systems in future bioinspired electronics.展开更多
Global carbon cycle has received extensive attention,among which the river-estuary system is one of the important links connecting the carbon cycle between land and ocean.In this paper,the distribution and control fac...Global carbon cycle has received extensive attention,among which the river-estuary system is one of the important links connecting the carbon cycle between land and ocean.In this paper,the distribution and control factors of particulate organic carbon(POC)were studied by using the data of organic carbon contents and its carbon isotopic composition(δ13C)in the mainstream and estuary of Passur River in the Sundarbans area,combined with the hydrological and biological data measured by CTD.The results show that POC content ranged from 0.263 mg/L to 9.292 mg/L,and the POC content in the river section(averaged 4.129 mg/L)was significantly higher than that in the estuary area(averaged 0.858 mg/L).Two distinct stages of POC transport from land to sea in the Sundarbans area were identified.The first stage occurred in the river section,where POC distribution was mainly controlled by the dynamic process of runoff and the organic carbon was mainly terrestrial source.The second stage occurred during estuarine mixing,where the POC distribution was mainly controlled by the mixing process of seawater and freshwater.The source of POC was predominantly marine and exhibiting vertical differences.The surface and middle layers were primarily influenced by marine sources,while the bottom layer was jointly controlled by terrestrial and marine sources of organic carbon.These findings are of great significance for understanding the carbon cycle in such a large mangrove ecosystem like the Sundarbans mangrove.展开更多
Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the ...Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the loss of soil-organic-carbon (SOC), which further enhances soil fertility. Different fractions of SOC pools react to the alterations in management practices and indicate changes in SOC dynamics as compared to total C in the soil. Higher SOC levels in soil have been observed in case of reduced/no-till (NT) practices than conventional tillage (CT). However, between CT and zero tillage/NT, total SOC stocks diminished with an increase in soil depth, which demonstrated that the benefits of SOC are more pronounced in the topsoil under NT. Soil aggregation provides physical protection to C associated with different-sized particles, thus, the improvement in soil aggregation through CA is an effective way to mitigate soil C loss. Along with less soil disturbance, residual management, suitable crop rotation, rational application of manures and fertilizers, and integrated nutrient management have been found to be effective in not only improving soil C stock but also enhancing the soil health and productivity. Thus, CA can be considered as a potential method in the build-up of SOC of soil in rice-wheat system.展开更多
BACKGROUND Infants'nutrition significantly influences their growth,development,and overall well-being.With the increasing demand for organic infant formula driven by the perception of health benefits and growing a...BACKGROUND Infants'nutrition significantly influences their growth,development,and overall well-being.With the increasing demand for organic infant formula driven by the perception of health benefits and growing awareness of natural feeding options,it is crucial to conduct a comparative analysis of the gastrointestinal tolerability between organic and traditional infant formulas.AIM To provide a concise and precise analysis of the gastrointestinal tolerability of organic infant formula compared to traditional infant formula.Due to limited direct comparisons,the review synthesizes available literature on each formula type,presenting insights into their potential effects on infants'digestive health.METHODS An extensive literature search was conducted,compiling studies on organic and traditional infant formulas,their compositions,and reported effects on gastrointestinal tolerability.We searched academic databases such as PubMed and Google Scholar and specialized nutrition,paediatrics,and infant health journals using relevant keywords till October 1,2023.RESULTS Although specific comparative studies are scarce and formula heterogeneity is a significant limitation,this systematic review provides an in-depth understanding of organic infant formulas'composition and potential benefits.While scientific evidence directly comparing gastrointestinal tolerability is limited,organic formulas strive to use carefully selected organic ingredients to imitate breast milk composition.Potential benefits include improved lipid profiles,higher methionine content,and decreased antibiotic-resistant bacteria levels.Understanding the gastrointestinal tolerability of organic and traditional infant formulas is crucial for parents and healthcare providers to make informed decisions.CONCLUSION Despite limitations in direct comparisons,this systematic review provides insights into the composition and potential benefits of organic infant formulas.It emphasizes the need for further research to elucidate their gastrointestinal effects comprehensively.展开更多
Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their...Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition.展开更多
Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(P...Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications.展开更多
Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testifie...Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries.展开更多
Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network act...Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.展开更多
BACKGROUND In the absence of effective antimicrobials,transplant surgery is not viable,and antirejection immunosuppressants cannot be administered,as resistant infections compromise the life-saving goal of organ trans...BACKGROUND In the absence of effective antimicrobials,transplant surgery is not viable,and antirejection immunosuppressants cannot be administered,as resistant infections compromise the life-saving goal of organ transplantation.AIM To evaluate the efficacy of antimicrobials in preventing resistance in solid organ transplant recipients.METHODS A systematic review was conducted using a search methodology consistent with the preferred reporting items for systematic reviews and meta-analyses.This review included randomized clinical trials that evaluated the efficacy of antimicrobial agents(prophylactic or therapeutic)aimed at preventing antimicrobial resistance.The search strategy involved analyzing multiple databases,including PubMed/MEDLINE,Web of Science,Embase,Scopus,and SciELO,as well as examining gray literature sources on Google Scholar.A comprehensive electronic database search was conducted from the databases’inception until May 2024,with no language restrictions.RESULTS After the final phase of the eligibility assessment,this systematic review ultimate-ly included 7 articles.A total of 2318 patients were studied.The most studied microorganisms were cytomegalovirus,although vancomycinresistant enterococci,Clostridioides difficile,and multidrug-resistant Enterobacterales were also analyzed.The antimicrobials used in the interventions were mainly maribavir,valganciclovir,gancic-lovir,and colistin-neomycin.Of concern,all clinical trials showed significant proportions of resistant microorga-nisms after the interventions,with no statistically significant differences between the groups(mean resistance 13.47%vs 14.39%),except for two studies that demonstrated greater efficacy of maribavir and valganciclovir(mean resistance 22.2%vs 41.1%in the control group;P<0.05).The total reported deaths in three clinical trials were 75,and there were 24 graft rejections in two studies.CONCLUSION All clinical trials reported significant proportions of antimicrobial-resistant microorganisms following interventions.More high-quality randomized clinical trials are needed to corroborate these results.展开更多
By electrodeposition in organic system,NiO films with reversible electrochromic property were fabricated.Fluorine-doped tin oxide glass slices were used as substrates,i.e.cathodes.Cyclic voltammetry and ultraviolet-vi...By electrodeposition in organic system,NiO films with reversible electrochromic property were fabricated.Fluorine-doped tin oxide glass slices were used as substrates,i.e.cathodes.Cyclic voltammetry and ultraviolet-visible transmission spectroscopy were adopted to study the electrochromic properties of the films.High resolution transmission electron microscopy(HRTEM) was employed to analyze the composition and structure of the films.It is found that the films are composed of fine NiO crystal grains of a few nanometers in diameter,endowing them with large visible light transmittance variation,rapid switch rate(i.e.rapid response time) between the bleached and colored states.Their cycling durability reached 6000 cycles.展开更多
At present, food safety and agricultural pollution arouse public attention. Developing organic agriculture, therefore, is a feasible approach to solve related problems. Caijia wa is a base of organic agricultural prod...At present, food safety and agricultural pollution arouse public attention. Developing organic agriculture, therefore, is a feasible approach to solve related problems. Caijia wa is a base of organic agricultural products of Miyun County in Beijing. Based on the experience of farm management of Taiwan, Caijiawa's char- acteristics were explored. Customer requests were collected and analyzed to find growth space of new market. To establish marketing system for Caijia wa Base, three questions should be settled at the very begining. The questions are as fol- lows: Who are the customers to be confronted with? What's kind of product or service can we provide? What are the causes that customers willing to pay a prod- uct at higher price? On basis of experience in Taiwan and local characters, the marketing system in Caijia wa Base can be concluded, including segmentation of market, diversification of marketing channel, close contact with clients and flexibility of price system. The pattern of omni-directional, muti-level and wide-ranging cooper- ation has been improved continuously. Finally, marketing system could integrate with social responsibility and sustainable development. Some measures about the marketing system have been proposed, which are believed applicable to other bases of organic agriculture.展开更多
In this research,the contents of organic carbon in soil profiles in rubber forests in west of Hainan were measured and storage quantity of oganic carbon was estimated.The results indicated that contents of organic car...In this research,the contents of organic carbon in soil profiles in rubber forests in west of Hainan were measured and storage quantity of oganic carbon was estimated.The results indicated that contents of organic carbon in soils of ecosystem of rubber forests at different ages were 6.20-14.36 g/kg;organic carbon in soils of rubber forests reduced upon soil depth;the contents differed signigicantly in soils at 0-60 cm in rubber forest at 33 a,but differed little in soils in rubber forests at other ages;the contents were of significant differences in soils in rubber forests at different ages;organic carbon concentrated in soils at 0-30 cm;the storage quantities of organic carbon in rubber forests at 5,10,19 and 33 a were 76.85,74.48,81.74 and 85.31 t/hm^2.Climate,soil property,accumualtion and decomposition of fallen materials,forest age and management are dominant factors influencing accumulation of organic carbon in soils of rubber forest.展开更多
Winter wheat-maize rotations are dominant cropping systems on the North China Plain, where recently the use of organic manure with grain crops has almost disappeared. This could reduce soil fertility and crop producti...Winter wheat-maize rotations are dominant cropping systems on the North China Plain, where recently the use of organic manure with grain crops has almost disappeared. This could reduce soil fertility and crop productivity in the long run. A 20-year field experiment was conducted to 1) assess the effect of inorganic and organic nutrient sources on yield and yield trends of both winter wheat and maize, 2) monitor the changes in soil organic matter content under continuous wheat-maize cropping with different soil fertility management schemes, and 3) identify reasons for yield trends observed in Xuzhou City, Jiangsu Province, over a 20-year period. There were eight treatments applied to both wheat and maize seasons: a control treatment (C); three inorganic fertilizers, that is, nitrogen (N), nitrogen and phosphorus (NP), and nitrogen, phosphorus and potassium (NPK); and addition of farmyard manure (FYM) to these four treatments, that is, M, MN, MNP, and MNPK. At the end of the experiment the MN, MNP, and MNPK treatments had the highest yields, about 7 t wheat ha-1 and 7.5 t maize ha-1, with each about 1 t ha-1 more than the NPK treatments. Over 20 years with FYM soil organic matter increased by 80% compared to only 10% with NPK, which explained yield increases. However, from an environmental and agronomic perspective, manure application was not a superior strategy to NPK fertilizers. If manure was to be applied, though, it would be best applied to the wheat crop, which showed a better response than maize.展开更多
In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrie...In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrient contents and improve soil aggregation. We investigated the effects of 28 yr of winter planted green manure on soil aggregate-size distribution and aggregateassociated carbon(C) and nitrogen(N). The study was a randomized completed block design with three replicates. The treatments included rice-rice-fallow, rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass. The experiment was established in 1982 on a silty light clayey paddy soil derived from Quaternary red clay(classified as Fe-Accumuli-Stagnic Anthrosols) with continuous early and late rice. In 2009, soil samples were collected(0-15 cm depth) from the field treatment plots and separated into water-stable aggregates of different sizes(i.e., 〉5, 2-5, 1-2, 0.5-1, 0.25-0.5 and 〈0.25 mm) by wet sieving. The long-term winter planted green manure significantly increased total C and N, and the formation of the 2-5-mm water-stable aggregate fraction. Compared with rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass, the rice-rice-fallow significantly reduced 2-5-mm water-stable aggregates, with a significant redistribution of aggregates into micro-aggregates. Long-term winter planted green manure obviously improved C/N ratio and macro-aggregate-associated C and N. The highest contribution to soil fertility was from macro-aggregates of 2-5 mm in most cases.展开更多
Increasing evidence has shown that conservation tillage is an effective agricultural practice to increase carbon (C) sequestration in soils. In order to understand the mechanisms underlying the responses of soil org...Increasing evidence has shown that conservation tillage is an effective agricultural practice to increase carbon (C) sequestration in soils. In order to understand the mechanisms underlying the responses of soil organic carbon (SOC) to tillage regimes, physical fractionation techniques were employed to evaluate the effect of long-term no-tillage (NT) on soil aggregation and SOC fractions. Results showed that NT increased the concentration of total SOC by 18.1% compared with conventional tillage (CT) under a long-term maize (Zea mays L.) cropping system in Northeast China. The proportion of soil large macroaggregates (〉 2 000 μm) was higher in NT than that in CT, while small macroaggregates (250-2 000μm) showed an opposite trend. Therefore, the total proportion of macroaggregates (〉 2 000 and 250-2 000μm) was not affected by tillage management. However, C concentrations of macroaggregates on a whole soil basis were higher under NT relative to CT, indicating that both the amount of aggregation and aggregate turnover affected C stabilization. Carbon concentrations of intra-aggregate particulate organic matter associated with microaggregates (iPOM-m) and microaggregates occluded within macroaggregates (iPOM-mM) in NT were 1.6 and 1.8 times greater than those in CT, respectively. Carbon proportions of iPOM-n and iPOM-mM in the total SOC increased from 5.4% and 6.3% in CT to 7.2% and 9.7% in NT, respectively. Furthermore, the difference in the microaggregate protected C (i. e., iPOM-m and iPOM-mM) between NT and CT could explain 45.4% of the difference in the whole SOC. The above results indicate that NT stimulates C accumulation within microaggregates which then are further acted upon in the soil to form macroaggregates. The shift of SOC within microaggregates is beneficial for long-term C sequestration in soil. We also corroborate that the microaggregate protected C is useful as a pool for assessing the impact of tillage management on SOC storage.展开更多
Soil labile (biologically active) organic carbon fractions under different crop rotation systems in Jiangsu Province, China, were investigated after 10 years of rotation. The rotation systems, including green manureri...Soil labile (biologically active) organic carbon fractions under different crop rotation systems in Jiangsu Province, China, were investigated after 10 years of rotation. The rotation systems, including green manurerice-rice (GmRR), wheat-rice-rice (WRR), wheat-rice (WR) and wheat/corn intercrop-rice (WCR) rotations,were established on paddy soils using a randomized complete block design with three replicates. The total organic carbon (TOC), total nitrogen (TN) and water-soluble organic carbon (WSOC) in the soils under different systems were greater in the GmRR and WRR than in the WR and WCR rotation systems because the soils under triple cropping often received more crop residues than the soils under double cropping. Both the WSOC and the microbial biomass carbon (MBC) contents in the soils of the GmRR rotation system were significantly greater than those in the other crop rotation systems, which was due to the return of green manure to the fields of the GmRR rotation system. The results of a 13C nuclear magnetic resonance (13C-NMR) analysis indicated that the structural characteristics of soil WSOC were similar under the four crop rotation systems with carbohydrates and long-chain aliphatics being the major components. Correlation analysis showed that the content of the WSOC was positively correlated with that of the MBC (P <0.01),and all had significantly positive correlations with TOC and TN. The coefficients of variation (CVs) for WSOC and WSOC/TOC were greater than the other indices (e.g, MBC, TOC and TN), suggesting that WSOC in the soils was more sensitive to these rotation systems. The results above indicated that the soil amended with green manure could not only increase the usable C source for soil microorganisms, but could also enhance soil organic matter content; hence, rotation with green manure would be a good strategy for sustainable agriculture.展开更多
基金supported by the Ministry of Science and Technology of Chinathe National Natural Science Foundation of China
文摘In some organic materials, varying the finite distance between adjacent carrier traps modifies the Coulomb potential around each trap, resulting in a more complex field-dependence of mobility, differing from (but not incompatible with) the usually considered relationship of ln μ∝√E ,a relationship which has been successfully explained by the Poole-Frenkel effect. To investigate the influence of the adjacency of traps, a model system is proposed, which consists of two traps separated by distance α. Our numerical calculation shows that with increasing α, the dependence of mobility on the electric field changes from linear to exponential. Moreover, beyond a certain large α, i.e., as the distance to the nearest trap approaches infinity, the proposed model is essentially the same as the Poole-Frenkel effect. The proposed model accounts for the effect of the energy barrier shape, especially the effect of the location of the potential-energy maximum, a phenomenon which is not accommodated in the Poole-Frenkel model. Because the model assumes the Coulomb interaction between the adjacent traps, it applies to those charged traps which may exist in organic materials for various reasons.
文摘The object of the study was fungous diseases occurring on roots, leave sheaths and stem base of winter wheat in the two opposing cropping systems (organic and conventional). The observations were made in vegetation periods (2007-2009) in the fields of winter wheat in northern Poland. Every year on each plot of compared farming systems root rot occurred (Fusarium spp., Gaeumannomyces graminis and other fungi). For the period of 3 years the degree of disease injury on the roots of winter wheat grown in the conventional system in the vegetation period increased, while in the organic one remained on pretty the same level. On average a lot more affected roots, especially in the flowering stage, occurred on the winter wheat grown in the conventional system. Fusarium foot rot (Fusarium spp.) developed on the wheat during the entire vegetation period. It was the most dangerous root and foot rot disease (the highest indexes of injury). The mean degree of disease injury on leave sheath was on pretty the same level in the two farming systems, although in investigated vegetation periods differed a lot, whereas at the bases of stems the pathogen was on the higher level on the wheat in the conventional system. Also eyespot (Tapesia yallude) developed in the entire vegetation period of the winter wheat, but its intensity was much lower than in case of fusarium foot rot. Leave sheaths of the wheat grown in the conventional system were slightly stronger affected than those grown in the organic system. In the flowering stage the intensity of the disease in both farming systems became equal, while in the wax maturity it was considerably higher in the conventional system. Sharp eyespot (Rhizoctonia spp.) appeared relatively late and occurred only in two years of investigation. The intensiveness of the disease was definitely higher on the organic plots. Among the affected roots, taken in the stem elongation stage, from the organic system 28 cultures of fungi were isolated, and from the conventional one 24 colonies. Cereals pathogenic fungi amounted 35.8% of isolates obtained from the organic system and as many as 66.7% from the conventional system. Among the affected roots, taken in the flowering stage, from the organic system 68 cultures of fungi were isolated in all, and from the conventional one 25 colonies. Cereals pathogenic fungi amounted 38.2% of isolates obtained from the organic system and 56.0% from the conventional system. Among the affected stem bases, taken in the wax maturity stage, from the organic system 56 cultures of fungi were isolated in all, and from the conventional one 52 colonies. Cereals pathogenic fungi amounted 48.4% of isolates obtained from the organic system and 53.6% from the conventional system. In the case of all root and foot rot diseases of wheat grown in the organic system, an advantageous influence of greater biodiversity and number of various fungi species living in root proximity was noticed as opposed to the conventional system.
文摘Materials with a high on-off resistance ratio could become the basis for resistive random-access memory (RRAM). It is assumed that one of RRAM types can be based on hybrid organic-inorganic systems, while particular attention is focused on hybrid systems consisting of metal nanoparticles (NP) embedded in organic matrix (OM). In this investigation we created and studied the hybrid organic-inorganic systems made of metal (Ag) nanoparticles embedded in organic semiconductor material CuPc. The LEED patterns and NEXAFS data demonstrate that the CuPc films deposited on Au(001) substrate are highly ordered and molecular planes lie parallel to the gold surface. The metal atoms were deposited on the outer surface of the organic molecular film and self-assembled into nanoparticles due to surface and bulk diffusion. The properties of nano-composite materials seem to be significantly dependent on the microstructure, i.e. the size, concentration, bulk- and size-distribution of nanoparticles;therefore we have studied by high resolution transmission electron microscopy the evolution of morphology of nano-composite films as a function of nominal metal deposition. The filled and empty electronic states of the hybrid organic-inorganic systems, energy level alignment at interfaces formed between metal nanoparticles and the organic semiconductor CuPc as well as the chemical interaction at the NP/OM interface were studied by UPS, XPS and NEXAFS methods.
基金supported by the National Natural Science Foundation of China(No.21906056No.22176060)+2 种基金the Undergraduate Training Program on Innovation and Entrepreneurship(S202110251087)the Science and Technology Commission of Shanghai Municipality(22ZR1418600)Shanghai Municipal Science and Technology(No.20DZ2250400).
文摘The existence and risk of emerging organic contaminants(EOCs)have been under consideration and paid much effort to degrade these pollutants.Fenton system is one of the most widely used technologies to solve this problem.The original Fenton system relies on the hydroxyl radicals produced by Fe(Ⅱ)/H_(2)O_(2) to oxidize the organic contaminants.However,the application of the Fenton system is limited by its low iron cycling efficiency and the high risks of hydrogen peroxide transportation and storage.The introduction of external energy(including light and electricity etc.)can effectively promote the Fe(Ⅲ)/Fe(Ⅱ)cycle and the reduction of oxygen to produce hydrogen peroxide in situ.This review introduces three in-situ Fenton systems,which are electro-Fenton,Photo-Fenton,and chemical reaction.The mechanism,influencing factors,and catalysts of these three in-situ Fenton systems in degrading EOCs are discussed systematically.This review strengthens the understanding of Fenton and in-situ Fenton systems in degradation,offering further insight into the real application of the in-situ Fenton system in the removal of EOCs.
基金the National Natural Science Foundation of China(U21A20497)Singapore National Research Foundation Investigatorship(Grant No.NRF-NRFI08-2022-0009)。
文摘The development of various artificial electronics and machines would explosively increase the amount of information and data,which need to be processed via in-situ remediation.Bioinspired synapse devices can store and process signals in a parallel way,thus improving fault tolerance and decreasing the power consumption of artificial systems.The organic field effect transistor(OFET)is a promising component for bioinspired neuromorphic systems because it is suitable for large-scale integrated circuits and flexible devices.In this review,the organic semiconductor materials,structures and fabrication,and different artificial sensory perception systems functions based on neuromorphic OFET devices are summarized.Subsequently,a summary and challenges of neuromorphic OFET devices are provided.This review presents a detailed introduction to the recent progress of neuromorphic OFET devices from semiconductor materials to perception systems,which would serve as a reference for the development of neuromorphic systems in future bioinspired electronics.
基金The Scientific Research Foundation of the Third Institute of Oceanography,Ministry of Natural Resources under contract Nos TIO2020008 and TIO2019028the Project of Marine Protected Areas Network in China-ASEAN Countries,National Key Research and Development Programe under contract No.2017YFC1405100the National Science Foundation of China under contract No.41976050.
文摘Global carbon cycle has received extensive attention,among which the river-estuary system is one of the important links connecting the carbon cycle between land and ocean.In this paper,the distribution and control factors of particulate organic carbon(POC)were studied by using the data of organic carbon contents and its carbon isotopic composition(δ13C)in the mainstream and estuary of Passur River in the Sundarbans area,combined with the hydrological and biological data measured by CTD.The results show that POC content ranged from 0.263 mg/L to 9.292 mg/L,and the POC content in the river section(averaged 4.129 mg/L)was significantly higher than that in the estuary area(averaged 0.858 mg/L).Two distinct stages of POC transport from land to sea in the Sundarbans area were identified.The first stage occurred in the river section,where POC distribution was mainly controlled by the dynamic process of runoff and the organic carbon was mainly terrestrial source.The second stage occurred during estuarine mixing,where the POC distribution was mainly controlled by the mixing process of seawater and freshwater.The source of POC was predominantly marine and exhibiting vertical differences.The surface and middle layers were primarily influenced by marine sources,while the bottom layer was jointly controlled by terrestrial and marine sources of organic carbon.These findings are of great significance for understanding the carbon cycle in such a large mangrove ecosystem like the Sundarbans mangrove.
文摘Ploughing and fertilization practices in rice-wheat system have deteriorated the soil carbon (C) pools. Conservation agriculture (CA) based management approaches have proven to enhance C sequestration and reverse the loss of soil-organic-carbon (SOC), which further enhances soil fertility. Different fractions of SOC pools react to the alterations in management practices and indicate changes in SOC dynamics as compared to total C in the soil. Higher SOC levels in soil have been observed in case of reduced/no-till (NT) practices than conventional tillage (CT). However, between CT and zero tillage/NT, total SOC stocks diminished with an increase in soil depth, which demonstrated that the benefits of SOC are more pronounced in the topsoil under NT. Soil aggregation provides physical protection to C associated with different-sized particles, thus, the improvement in soil aggregation through CA is an effective way to mitigate soil C loss. Along with less soil disturbance, residual management, suitable crop rotation, rational application of manures and fertilizers, and integrated nutrient management have been found to be effective in not only improving soil C stock but also enhancing the soil health and productivity. Thus, CA can be considered as a potential method in the build-up of SOC of soil in rice-wheat system.
文摘BACKGROUND Infants'nutrition significantly influences their growth,development,and overall well-being.With the increasing demand for organic infant formula driven by the perception of health benefits and growing awareness of natural feeding options,it is crucial to conduct a comparative analysis of the gastrointestinal tolerability between organic and traditional infant formulas.AIM To provide a concise and precise analysis of the gastrointestinal tolerability of organic infant formula compared to traditional infant formula.Due to limited direct comparisons,the review synthesizes available literature on each formula type,presenting insights into their potential effects on infants'digestive health.METHODS An extensive literature search was conducted,compiling studies on organic and traditional infant formulas,their compositions,and reported effects on gastrointestinal tolerability.We searched academic databases such as PubMed and Google Scholar and specialized nutrition,paediatrics,and infant health journals using relevant keywords till October 1,2023.RESULTS Although specific comparative studies are scarce and formula heterogeneity is a significant limitation,this systematic review provides an in-depth understanding of organic infant formulas'composition and potential benefits.While scientific evidence directly comparing gastrointestinal tolerability is limited,organic formulas strive to use carefully selected organic ingredients to imitate breast milk composition.Potential benefits include improved lipid profiles,higher methionine content,and decreased antibiotic-resistant bacteria levels.Understanding the gastrointestinal tolerability of organic and traditional infant formulas is crucial for parents and healthcare providers to make informed decisions.CONCLUSION Despite limitations in direct comparisons,this systematic review provides insights into the composition and potential benefits of organic infant formulas.It emphasizes the need for further research to elucidate their gastrointestinal effects comprehensively.
文摘Annual forage legumes are important components of livestock production systems in East Texas and the southeastern US. Forage legumes contribute nitrogen (N) to cropping systems through biological N fixation, and their seasonal biomass production can be managed to complement forage grasses. Our research objectives were to evaluate both warm- and cool-season annual forage legumes as green manure for biomass, N content, ability to enhance soil organic carbon (SOC) and soil N, and impact on post season forage grass crops. Nine warm-season forage legumes (WSL) were spring planted and incorporated as green manure in the fall. Forage rye (Secale cereale L.) was planted following the incorporation of WSL treatments. Eight cool-season forage legumes (CSL) were fall planted in previously fallow plots and incorporated as green manure in late spring. Sorghum-sudangrass (Sorghum bicolor x Sorghum bicolor var. sudanense) was planted over all treatments in early summer after forage rye harvest and incorporation of CSL treatments. Sorghum-sudangrass was harvested in June, August and September, and treatments were evaluated for dry matter and N concentration. Soil cores were taken from each plot, split into depths of 0 to 15, 15 to 30 and 30 to 60 cm, and soil C and N were measured using combustion analysis. Nylon mesh bags containing plant samples were buried at 15 cm and used to evaluate decomposition rate of above ground legume biomass, including change in C and N concentrations. Mungbean (Vigna radiata L. [Wilczek]) had the highest shoot biomass yield (6.24 t DM ha<sup>-1</sup>) and contributed the most total N (167 kg∙ha<sup>-1</sup>) and total C (3043 kg∙ha<sup>-1</sup>) of the WSL tested. Decomposition rate of WSL biomass was rapid in the first 10 weeks and very slow afterward. Winter pea (Pisum sativum L. spp. sativum), arrow leaf clover (Trifolium vesiculosum Savi.), and crimson clover (Trifolium incarnatum L.) were the most productive CSL in this trial. Austrian winter pea produced 8.41 t DM ha<sup>-1</sup> with a total N yield of 319 kg N ha<sup>-1</sup> and total C production of 3835 kg C ha<sup>-1</sup>. The WSL treatments had only small effects on rye forage yield and N concentration, possibly due to mineralization of N from a large SOC pool already in place. The CSL treatments also had only minimal effects on sorghum-sudangrass forage production. Winter pea, arrow leaf and crimson clover were productive cool season legumes and could be useful as green manure crops. Mungbean and cowpea (Vigna unguiculata [L.] Walp.) were highly productive warm season legumes but may include more production risk in green manure systems due to soil moisture competition.
基金funding from National Science Foundation of China(52202337 and 22178015)the Young Taishan Scholars Program of Shandong Province(tsqn202211082)+1 种基金Natural Science Foundation of Shandong Province(ZR2023MB051)Independent Innovation Research Project of China University of Petroleum(East China)(22CX06023A).
文摘Layer-structured Ruddlesden–Popper(RP)perovskites(RPPs)with decent stability have captured the imagination of the photovoltaic research community and bring hope for boosting the development of perovskite solar cell(PSC)technology.However,two-dimensional(2D)or quasi-2D RP PSCs are encountered with some challenges of the large exciton binding energy,blocked charge transport and poor film quality,which restrict their photovoltaic performance.Fortunately,these issues can be readily resolved by rationally designing spacer cations of RPPs.This review mainly focuses on how to design the molecular structures of organic spacers and aims to endow RPPs with outstanding photovoltaic applications.We firstly elucidated the important roles of organic spacers in impacting crystallization kinetics,charge transporting ability and stability of RPPs.Then we brought three aspects to attention for designing organic spacers.Finally,we presented the specific molecular structure design strategies for organic spacers of RPPs aiming to improve photovoltaic performance of RP PSCs.These proposed strategies in this review will provide new avenues to develop novel organic spacers for RPPs and advance the development of RPP photovoltaic technology for future applications.
基金supported by the National Natural Science Foundation of China(No.92372123)Guangdong Basic and Applied Basic Research Foundation(No.2022A1515012057,2022B1515020005,2023B1515130004)Guangzhou Basic and Applied Basic Research Foundation(No.202201011342).
文摘Porous organic cages(POCs)with permanent porosity and excellent host–guest property hold great potentials in regulating ion transport behavior,yet their feasibility as solid-state electrolytes has never been testified in a practical battery.Herein,we design and fabricate a quasi-solid-state electrolyte(QSSE)based on a POC to enable the stable operation of Li-metal batteries(LMBs).Benefiting from the ordered channels and cavity-induced anion-trapping effect of POC,the resulting POC-based QSSE exhibits a high Li+transference number of 0.67 and a high ionic conductivity of 1.25×10^(−4) S cm^(−1) with a low activation energy of 0.17 eV.These allow for homogeneous Li deposition and highly reversible Li plating/stripping for over 2000 h.As a proof of concept,the LMB assembled with POC-based QSSE demonstrates extremely stable cycling performance with 85%capacity retention after 1000 cycles.Therefore,our work demonstrates the practical applicability of POC as SSEs for LMBs and could be extended to other energy-storage systems,such as Na and K batteries.
基金Technology Development Program of Jilin Province(YDZJ202201ZYTS640)the National Key Research and Development Program of China(2022YFB4200400)funded by MOST+4 种基金the National Natural Science Foundation of China(52172048 and 52103221)Shandong Provincial Natural Science Foundation(ZR2021QB024 and ZR2021ZD06)Guangdong Basic and Applied Basic Research Foundation(2023A1515012323,2023A1515010943,and 2024A1515010023)the Qingdao New Energy Shandong Laboratory open Project(QNESL OP 202309)the Fundamental Research Funds of Shandong University.
文摘Recently published in Joule,Feng Liu and colleagues from Shanghai Jiaotong University reported a record-breaking 20.8%power conversion efficiency in organic solar cells(OSCs)with an interpenetrating fibril network active layer morphology,featuring a bulk p-in structure and proper vertical segregation achieved through additive-assisted layer-by-layer deposition.This optimized hierarchical gradient fibrillar morphology and optical management synergistically facilitates exciton diffusion,reduces recombination losses,and enhances light capture capability.This approach not only offers a solution to achieving high-efficiency devices but also demonstrates the potential for commercial applications of OSCs.
文摘BACKGROUND In the absence of effective antimicrobials,transplant surgery is not viable,and antirejection immunosuppressants cannot be administered,as resistant infections compromise the life-saving goal of organ transplantation.AIM To evaluate the efficacy of antimicrobials in preventing resistance in solid organ transplant recipients.METHODS A systematic review was conducted using a search methodology consistent with the preferred reporting items for systematic reviews and meta-analyses.This review included randomized clinical trials that evaluated the efficacy of antimicrobial agents(prophylactic or therapeutic)aimed at preventing antimicrobial resistance.The search strategy involved analyzing multiple databases,including PubMed/MEDLINE,Web of Science,Embase,Scopus,and SciELO,as well as examining gray literature sources on Google Scholar.A comprehensive electronic database search was conducted from the databases’inception until May 2024,with no language restrictions.RESULTS After the final phase of the eligibility assessment,this systematic review ultimate-ly included 7 articles.A total of 2318 patients were studied.The most studied microorganisms were cytomegalovirus,although vancomycinresistant enterococci,Clostridioides difficile,and multidrug-resistant Enterobacterales were also analyzed.The antimicrobials used in the interventions were mainly maribavir,valganciclovir,gancic-lovir,and colistin-neomycin.Of concern,all clinical trials showed significant proportions of resistant microorga-nisms after the interventions,with no statistically significant differences between the groups(mean resistance 13.47%vs 14.39%),except for two studies that demonstrated greater efficacy of maribavir and valganciclovir(mean resistance 22.2%vs 41.1%in the control group;P<0.05).The total reported deaths in three clinical trials were 75,and there were 24 graft rejections in two studies.CONCLUSION All clinical trials reported significant proportions of antimicrobial-resistant microorganisms following interventions.More high-quality randomized clinical trials are needed to corroborate these results.
基金sponsored by the Natural Science Foundation of Shandong Province of China (Grant No. ZR2010EM027)the Applied and Basic Research Project (11-2-4-1-(2)-jch) of Qingdao Municipal Science Technology Commission of China
文摘By electrodeposition in organic system,NiO films with reversible electrochromic property were fabricated.Fluorine-doped tin oxide glass slices were used as substrates,i.e.cathodes.Cyclic voltammetry and ultraviolet-visible transmission spectroscopy were adopted to study the electrochromic properties of the films.High resolution transmission electron microscopy(HRTEM) was employed to analyze the composition and structure of the films.It is found that the films are composed of fine NiO crystal grains of a few nanometers in diameter,endowing them with large visible light transmittance variation,rapid switch rate(i.e.rapid response time) between the bleached and colored states.Their cycling durability reached 6000 cycles.
基金Supported by Social Science Research Common Program of Beijing Municipal Commission of Education(SM201110017001)~~
文摘At present, food safety and agricultural pollution arouse public attention. Developing organic agriculture, therefore, is a feasible approach to solve related problems. Caijia wa is a base of organic agricultural products of Miyun County in Beijing. Based on the experience of farm management of Taiwan, Caijiawa's char- acteristics were explored. Customer requests were collected and analyzed to find growth space of new market. To establish marketing system for Caijia wa Base, three questions should be settled at the very begining. The questions are as fol- lows: Who are the customers to be confronted with? What's kind of product or service can we provide? What are the causes that customers willing to pay a prod- uct at higher price? On basis of experience in Taiwan and local characters, the marketing system in Caijia wa Base can be concluded, including segmentation of market, diversification of marketing channel, close contact with clients and flexibility of price system. The pattern of omni-directional, muti-level and wide-ranging cooper- ation has been improved continuously. Finally, marketing system could integrate with social responsibility and sustainable development. Some measures about the marketing system have been proposed, which are believed applicable to other bases of organic agriculture.
基金Supported by Strategic Priority Research Program,CAS(XDA05050601-01-25)Basic Scientific Research Project of Central Science and Technology Institute(163002-2011013)Project of Danzhou Investigation&Experiment Station of Tropical Crops Ministry of Agriculture~~
文摘In this research,the contents of organic carbon in soil profiles in rubber forests in west of Hainan were measured and storage quantity of oganic carbon was estimated.The results indicated that contents of organic carbon in soils of ecosystem of rubber forests at different ages were 6.20-14.36 g/kg;organic carbon in soils of rubber forests reduced upon soil depth;the contents differed signigicantly in soils at 0-60 cm in rubber forest at 33 a,but differed little in soils in rubber forests at other ages;the contents were of significant differences in soils in rubber forests at different ages;organic carbon concentrated in soils at 0-30 cm;the storage quantities of organic carbon in rubber forests at 5,10,19 and 33 a were 76.85,74.48,81.74 and 85.31 t/hm^2.Climate,soil property,accumualtion and decomposition of fallen materials,forest age and management are dominant factors influencing accumulation of organic carbon in soils of rubber forest.
基金Project supported by the National Natural Science Foundation of China (No. 30030090)the National High-Tech Research and Development Program of China (863 Program) (No. 2003AA209030).
文摘Winter wheat-maize rotations are dominant cropping systems on the North China Plain, where recently the use of organic manure with grain crops has almost disappeared. This could reduce soil fertility and crop productivity in the long run. A 20-year field experiment was conducted to 1) assess the effect of inorganic and organic nutrient sources on yield and yield trends of both winter wheat and maize, 2) monitor the changes in soil organic matter content under continuous wheat-maize cropping with different soil fertility management schemes, and 3) identify reasons for yield trends observed in Xuzhou City, Jiangsu Province, over a 20-year period. There were eight treatments applied to both wheat and maize seasons: a control treatment (C); three inorganic fertilizers, that is, nitrogen (N), nitrogen and phosphorus (NP), and nitrogen, phosphorus and potassium (NPK); and addition of farmyard manure (FYM) to these four treatments, that is, M, MN, MNP, and MNPK. At the end of the experiment the MN, MNP, and MNPK treatments had the highest yields, about 7 t wheat ha-1 and 7.5 t maize ha-1, with each about 1 t ha-1 more than the NPK treatments. Over 20 years with FYM soil organic matter increased by 80% compared to only 10% with NPK, which explained yield increases. However, from an environmental and agronomic perspective, manure application was not a superior strategy to NPK fertilizers. If manure was to be applied, though, it would be best applied to the wheat crop, which showed a better response than maize.
基金funded by the Special Fund for AgroScientific Research in the Public Interest of China (20110300508, 201203030)supported in partial by the Key Technologies R&D Program of China during the 12th Five-Year Plan period (2012BAD05B05-3, 2013BAD07B11)the International Plant Nutrition Institute, Canada (IPNI China Program: Hunan-17)
文摘In agricultural systems, maintenance of soil organic matter has long been recognized as a strategy to reduce soil degradation. Manure amendments and green manures are management practices that can increase some nutrient contents and improve soil aggregation. We investigated the effects of 28 yr of winter planted green manure on soil aggregate-size distribution and aggregateassociated carbon(C) and nitrogen(N). The study was a randomized completed block design with three replicates. The treatments included rice-rice-fallow, rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass. The experiment was established in 1982 on a silty light clayey paddy soil derived from Quaternary red clay(classified as Fe-Accumuli-Stagnic Anthrosols) with continuous early and late rice. In 2009, soil samples were collected(0-15 cm depth) from the field treatment plots and separated into water-stable aggregates of different sizes(i.e., 〉5, 2-5, 1-2, 0.5-1, 0.25-0.5 and 〈0.25 mm) by wet sieving. The long-term winter planted green manure significantly increased total C and N, and the formation of the 2-5-mm water-stable aggregate fraction. Compared with rice-rice-rape, rice-rice-Chinese milk vetch and rice-rice-ryegrass, the rice-rice-fallow significantly reduced 2-5-mm water-stable aggregates, with a significant redistribution of aggregates into micro-aggregates. Long-term winter planted green manure obviously improved C/N ratio and macro-aggregate-associated C and N. The highest contribution to soil fertility was from macro-aggregates of 2-5 mm in most cases.
基金Supported by the National Basic Research Program(973Program)of China(No.2009CB118601)the Foundation of the Chinese Academy of Agricultural Sciences(No.082060302-19)+2 种基金the National Natural Science Foundation of China(No.30571094)the Program for New Century Excellent Talents in University,China(No.NCET-05-0492)the Doctoral Foundation of the Ministry of Education,China(No.B200608)
文摘Increasing evidence has shown that conservation tillage is an effective agricultural practice to increase carbon (C) sequestration in soils. In order to understand the mechanisms underlying the responses of soil organic carbon (SOC) to tillage regimes, physical fractionation techniques were employed to evaluate the effect of long-term no-tillage (NT) on soil aggregation and SOC fractions. Results showed that NT increased the concentration of total SOC by 18.1% compared with conventional tillage (CT) under a long-term maize (Zea mays L.) cropping system in Northeast China. The proportion of soil large macroaggregates (〉 2 000 μm) was higher in NT than that in CT, while small macroaggregates (250-2 000μm) showed an opposite trend. Therefore, the total proportion of macroaggregates (〉 2 000 and 250-2 000μm) was not affected by tillage management. However, C concentrations of macroaggregates on a whole soil basis were higher under NT relative to CT, indicating that both the amount of aggregation and aggregate turnover affected C stabilization. Carbon concentrations of intra-aggregate particulate organic matter associated with microaggregates (iPOM-m) and microaggregates occluded within macroaggregates (iPOM-mM) in NT were 1.6 and 1.8 times greater than those in CT, respectively. Carbon proportions of iPOM-n and iPOM-mM in the total SOC increased from 5.4% and 6.3% in CT to 7.2% and 9.7% in NT, respectively. Furthermore, the difference in the microaggregate protected C (i. e., iPOM-m and iPOM-mM) between NT and CT could explain 45.4% of the difference in the whole SOC. The above results indicate that NT stimulates C accumulation within microaggregates which then are further acted upon in the soil to form macroaggregates. The shift of SOC within microaggregates is beneficial for long-term C sequestration in soil. We also corroborate that the microaggregate protected C is useful as a pool for assessing the impact of tillage management on SOC storage.
基金Project supported by the National Key Basic Research Support Foundation (NKBRSF) of China (No. G1999011809) the National Natural Science Foundation of China (No. 49871044).
文摘Soil labile (biologically active) organic carbon fractions under different crop rotation systems in Jiangsu Province, China, were investigated after 10 years of rotation. The rotation systems, including green manurerice-rice (GmRR), wheat-rice-rice (WRR), wheat-rice (WR) and wheat/corn intercrop-rice (WCR) rotations,were established on paddy soils using a randomized complete block design with three replicates. The total organic carbon (TOC), total nitrogen (TN) and water-soluble organic carbon (WSOC) in the soils under different systems were greater in the GmRR and WRR than in the WR and WCR rotation systems because the soils under triple cropping often received more crop residues than the soils under double cropping. Both the WSOC and the microbial biomass carbon (MBC) contents in the soils of the GmRR rotation system were significantly greater than those in the other crop rotation systems, which was due to the return of green manure to the fields of the GmRR rotation system. The results of a 13C nuclear magnetic resonance (13C-NMR) analysis indicated that the structural characteristics of soil WSOC were similar under the four crop rotation systems with carbohydrates and long-chain aliphatics being the major components. Correlation analysis showed that the content of the WSOC was positively correlated with that of the MBC (P <0.01),and all had significantly positive correlations with TOC and TN. The coefficients of variation (CVs) for WSOC and WSOC/TOC were greater than the other indices (e.g, MBC, TOC and TN), suggesting that WSOC in the soils was more sensitive to these rotation systems. The results above indicated that the soil amended with green manure could not only increase the usable C source for soil microorganisms, but could also enhance soil organic matter content; hence, rotation with green manure would be a good strategy for sustainable agriculture.