Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTE...Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability.展开更多
Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid mater...Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid materials,which attracted considerable attention in many fields over the years.One of the factors contributing to the widespread applicability of layered double hydroxides is their adaptable composition,which can accommodate a wide spectrum of potential anionic guests.This exceptional property makes the LDH system simple to adjust for various applications.However,most LDH systems are synthesized in situ in an autoclave at high temperatures and pressures that severely restrict the industrial use of such coating systems.In this study,LDH was directly synthesized on a magnesium alloy that had undergone plasma electrolytic oxidation(PEO)treatment in the presence of ethylenediaminetetraacetic acid,thereby avoiding the use of hydrothermal autoclave conditions.This LDH system was compared with a hybrid architecture consisting of organic-inorganic self-assembly.An organic layer was fabricated on top of the LDH film using 4-Aminophenol(Aph)compound,resulting in a smart hierarchical structure that can provide a robust Aph@LDH film with excellent anti-corrosion performance.At the molecular level,the conjugation characteristics and adsorption mechanism of Aph molecule were studied using two levels of theory as follows.First,Localized orbit locator(LOL)-πisosurface,electrostatic potential(ESP)distribution,and average local ionization energy(ALIE)on the molecular surface were used to highlight localization region,reveal the favorable electrophilic and nucleophilic attacks,and clearly explore the type of interactions that occurred around interesting regions.Second,first-principles based on density functional theory(DFT)was applied to study the hybrid mechanism of Aph on LDH system and elucidate their mutual interactions.The experimental and computational analyses suggest that the highπ-electron density and delocalization characteristics of the functional groups and benzene ring in the Aph molecule played a leading role in the synergistic effects arising from the combination of organic and inorganic coatings.This work provides a promising approach to design advanced hybrid materials with exceptional electrochemical performance.展开更多
A polyoxovanadium borate [Na(H2O)]2[Na(H2O)2]2[Cu(en)2][V12B18O54(OH)6]·(H3O)2·(H2O)18 1(en = ethylenediamine) has been hydrothermally synthesized and characterized by IR,two-dimensional infra...A polyoxovanadium borate [Na(H2O)]2[Na(H2O)2]2[Cu(en)2][V12B18O54(OH)6]·(H3O)2·(H2O)18 1(en = ethylenediamine) has been hydrothermally synthesized and characterized by IR,two-dimensional infrared(2D IR) correlation spectroscopy with magnetic and thermal perturba-tion,thermal IR spectroscopy,thermal gravimetric analysis and single-crystal X-ray diffraction.It crystallizes in triclinic,space group P with a = 12.981(3),b = 13.044(3),c = 14.208(3) ,α = 63.98(3),β = 77.17(3),γ = 14.208(3)°,V = 2001.0(8) 3,Z = 1,Mr = 2518.05,Dc = 2.090 g/cm-1,F(000) = 1255.0,Mu(mm-1) = 1.756,λ(MoKα) = 0.71073 ,R = 0.0625 and wR = 0.1952.In 1,the [V12B18O54(OH)6]8- units are connected by [Cu(en)2]2+,binuclear Na(1) and Na(2) to form a three-dimensional porous framework.展开更多
Hybrid materials of vanadium nitride and porous carbon nanoparticles(VN/PCNPs) were fabricated by a facile pyrolysis process of vanadium pentoxide(V_2O_5) xerogel and melamine at relatively low temperature of 800 ...Hybrid materials of vanadium nitride and porous carbon nanoparticles(VN/PCNPs) were fabricated by a facile pyrolysis process of vanadium pentoxide(V_2O_5) xerogel and melamine at relatively low temperature of 800 °C for supercapacitor application. The effects of the feed ratio of V_2O_5 to melamine(r), and nitrogen flow rate on the microstructure and electrochemical performance were also investigated. It was found that the size of the as-synthesized nanoparticles is about 20 nm. Both r value and N_2 flow rate have enormous impacts on morphology and microstructure of the nanoparticle, which correspondingly determined the electrochemical performance of the material. The VN/C hybrid nanoparticles exhibited high capacitive properties, and a maximum specific capacitance of 255.0 Fg^(-1) was achieved at a current density of 1.0 Ag^(-1) in 2 M KOH aqueous electrolyte and the potential range from 0 to -1.15 V. In addition,symmetrical supercapacitor fabricated with the as-synthesized VN/PCNPs presents a high specific capacitance of 43.5 F g^(-1) at 0.5 A g^(-1) based on the entire cell, and an energy density of 8.0 Wh kg^(-1) when the power density was 575 W kg^(-1). Even when the power density increased to 2831.5 W kg^(-1), the energy density still remained 6.1 Wh kg^(-1).展开更多
Potassium-ion hybrid capacitors(KIHCs) have attracted increasing research interest because of the virtues of potassium-ion batteries and supercapacitors.The development of KIHCs is subject to the investigation of appl...Potassium-ion hybrid capacitors(KIHCs) have attracted increasing research interest because of the virtues of potassium-ion batteries and supercapacitors.The development of KIHCs is subject to the investigation of applicable K+storage materials which are able to accommodate the relatively large size and high activity of potassium.Here,we report a cocoon silk chemistry strategy to synthesize a hierarchically porous nitrogen-doped carbon(SHPNC).The as-prepared SHPNC with high surface area and rich N-doping not only offers highly efficient channels for the fast transport of electrons and K ions during cycling,but also provides sufficient void space to relieve volume expansion of electrode and improves its stability.Therefore,KIHCs with SHPNC anode and activated carbon cathode afford high energy of 135 Wh kg-1(calculated based on the total mass of anode and cathode),long lifespan,and ultrafast charge/slow discharge performance.This study defines that the KIHCs show great application prospect in the field of high-performance energy storage devices.展开更多
Graphene-based composites took extensive attraction as electrodes for supercacitors these years.Three-dimensional cross-linking porous graphene(3D rGO-m)was obtained by KOH activation to graphene modified by 1,2,4-tri...Graphene-based composites took extensive attraction as electrodes for supercacitors these years.Three-dimensional cross-linking porous graphene(3D rGO-m)was obtained by KOH activation to graphene modified by 1,2,4-triaminobenzene.3D porous graphene/polyaniline hybrids(3D rGO-m/PANI)was prepared by the in-situ chemical oxidative polymerization.The rGO-m are reconstructed from 2D to 3D porous structure after KOH activation.The PANI nanorod arrays are successfully decorated on the surface of the 3D porous graphene sheets.The specific capacitance of the 3D rGO-m/PANI hybrids reach 985 F/g at 0.5 A/g.The capacitance retention of 3D rGO-m/PANI maintains 90%of its initial capacity after 1000 cycles,while rGO-m/PANI only keeps 83%of its initial capacity,the cycling stability of both hybrids are higher than that of pure PANI(69%).展开更多
Inducing or enhancing superconductivity in topological materials is an important route toward topological superconductivity.Reducing the thickness of transition metal dichalcogenides(e.g.WTe2 and MoTe2)has provided an...Inducing or enhancing superconductivity in topological materials is an important route toward topological superconductivity.Reducing the thickness of transition metal dichalcogenides(e.g.WTe2 and MoTe2)has provided an important pathway to engineer superconductivity in topological matters.However,such monolayer sample is difficult to obtain,unstable in air,and with extremely low Tc.Here we report an experimentally convenient approach to control the interlayer coupling to achieve tailored topological properties,enhanced superconductivity and good sample stability through organic-cation intercalation of the Weyl semimetals MoTe2 and WTe2.The as-formed organic-inorganic hybrid crystals are weak topological insulators with enhanced Tc of 7.0 K for intercalated MoTe2(0.25 K for pristine crystal)and2.3 K for intercalated WTe2(2.8 times compared to monolayer WTe2).Such organic-cation intercalation method can be readily applied to many other layered crystals,providing a new pathway for manipulating their electronic,topological and superconducting properties.展开更多
A new organic-inorganic hybrid compound (dienHs)2(P2Mo5O23) (1) [dien=NH(CH2CH2NH2)2] has been hydrothermally synthesized and characterized by elemental analyses, IR spectrum, thermogravimetric analysis, and t...A new organic-inorganic hybrid compound (dienHs)2(P2Mo5O23) (1) [dien=NH(CH2CH2NH2)2] has been hydrothermally synthesized and characterized by elemental analyses, IR spectrum, thermogravimetric analysis, and the single crystal X-ray diffraction technique. Compound 1 crystallizes in the triclinic system with space group P1 and a=0.9790(2) nm, b=0.9922(2) nm, c= 1.4644(3) nm, α=95.510(10)°, β=98.860(10)°, γ=95.700(10)°, V=1.3895(5) nm^3, Z=2, R=0.0465. The results show that the compound consists of dienH3^3++ and P2Mo5O23^6-, and the heteropoly anion P2Mo5O23^6- is connected to a 1-D chain structure with the protonated dien by hydrogen bonds.展开更多
Since the discovery of a surfactant directed self-assembly approach for the fabrication of mesoporous silica in 1992,increasing attention has been focused on the design and synthesis of mesostructured functional mater...Since the discovery of a surfactant directed self-assembly approach for the fabrication of mesoporous silica in 1992,increasing attention has been focused on the design and synthesis of mesostructured functional materials.Organic functionalization is becoming a major topic in this research field,since highly ordered mesostructured organic-inorganic hybrids offer novel functionalities and enhanced performance over their individual components.We begin with a brief overview of the three fundamental methods(post-synthetic grafting technique,co-condensation method,and preparation of periodic mesoporous organosilicas) for the preparation of organically functionalized mesostructured silica,and focus on one of the most promising approaches,which herein was named as functional-template directed self-assembly(FTDSA) approach,and in the eyes of the authors it has a special position in the preparation of this class of hybrid materials.A comprehensive overview of the state of research in the area of FTDSA and its potential applications will be given.展开更多
2×2 Mach-Zehnder interferometric thermo-optic switch was fabricated with organic/inorganic hybrid materials by sol-gel technique and direct UV patterning. The switching time of device was measured to be 4.2 ms an...2×2 Mach-Zehnder interferometric thermo-optic switch was fabricated with organic/inorganic hybrid materials by sol-gel technique and direct UV patterning. The switching time of device was measured to be 4.2 ms and switching power 9.3 mW.展开更多
Zinc-ion hybrid supercapacitors (ZHSs), which combine the superiority of batteries and supercapacitors, will become a new development direction in the field of energy storage. The development of ZHSs with high capacit...Zinc-ion hybrid supercapacitors (ZHSs), which combine the superiority of batteries and supercapacitors, will become a new development direction in the field of energy storage. The development of ZHSs with high capacity and high stability can be further promoted by heteroatom doping or structural modification of cathode materials. Herein, N,O,P co-doped porous carbon materials were synthesized by a facile method using coal tar pitch as precursor, aluminum phosphate as template, and sodium hydroxide as activator. Due to the high specific surface area and abundant micropores, the heteroatom-doped porous carbon materials were employed as cathode for aqueous ZHSs to study the electrochemical performance. Benefitted from the rich micropores and heteroatom doping, the porous carbon electrodes exhibit an outstanding electrochemical performance and deliver a large specific capacitance of 113.3 mA h g 1 at 0.1 A g 1. In addition, the porous carbon electrode shows a high energy density of 64.9 Wh kg 1 and a high power density of 1.23 kW kg 1, which outperforms most aqueous ZHS energy storage systems previously reported. Interestingly, after 5000 cycles at 1 A g 1, the specific capacity is about 36% higher than the original capacity and the coulomb efficiency still remains nearly 100%. The article may provide a new insight into exploring cathode materials for high-performance aqueous rechargeable zinc-ion energy storage devices.展开更多
Titanium dioxide(TiO_(2))has been limited in photocatalysis due to its wide band gap(3.2 eV)and limited absorption in the ultraviolet range.Therefore,organic components have been introduced to hybrid with TiO_(2) for ...Titanium dioxide(TiO_(2))has been limited in photocatalysis due to its wide band gap(3.2 eV)and limited absorption in the ultraviolet range.Therefore,organic components have been introduced to hybrid with TiO_(2) for enhanced photocatalytic efficiency under visible light.Here,we report that benzo[1,2-b:4,5-b']dithiophene polymer was an ideal organic material for the preparation of a hybrid material with TiO_(2).The energy band gap of the resulting hybrid material decreased to 2.9 eV and the photocatalytic hydrogen production performance reached 745.0μmol g^(-1) h^(-1) under visible light irradiation.Meanwhile,the material still maintained the stability of hydrogen production performance after 40 h of photocatalytic cycles.The analysis of the transient current response and electrochemical impedance revealed that the main reasons for the enhanced water splitting of the hybrid materials were the faster separation of electron hole pairs and the lower recombination of photocarrier ions.Our findings suggest that polythiophene is a promising organic material for exploring hybrid materials with enhanced photocatalytic hydrogen production.展开更多
Polyaniline stannic molybdate—an organic-inorganic composite material, was prepared via sol-gel mixing of organic polymer polyaniline into matrices of inorganic precipitate of stannicmolybdate. The composite material...Polyaniline stannic molybdate—an organic-inorganic composite material, was prepared via sol-gel mixing of organic polymer polyaniline into matrices of inorganic precipitate of stannicmolybdate. The composite material synthesized at pH 1.2 showed an ion exchange capacity 1.8 meq/g for Na+?ions. Ion exchange capacity, pH titration and distribution studies were carried out to determine the preliminary ion exchange properties of the material. The distribution studies showed the selectivity of Hg(II) ions by this material. The effect of temperature on the ion exchange capacity of the material at different temperatures had been studied. The sorption behavior of metal ions was also explored in different surfactant media.展开更多
The narrow bandgap of the low-energy near-infrared(NIR)polymer would lead to overlap between adjacent energy levels,which is a major barrier to the preparation of Vis-NIR polymer bulk hetero-junction(BHJ)photodetector...The narrow bandgap of the low-energy near-infrared(NIR)polymer would lead to overlap between adjacent energy levels,which is a major barrier to the preparation of Vis-NIR polymer bulk hetero-junction(BHJ)photodetectors with small responsivity and photocurrent.In this study,a high-performance lateral inorganic-organic hybrid photodetector was constructed to eliminate this barrier by combining GaN nanowires(GaN-NWs)with PDPP3T:PC61BM-based BHJ.In stage one,high-quality GaN-NWs were synthesized by the catalyst-free CVD method.The mechanism for controlling GaN-NWs morphology by adjusting the NH3 flow rate was revealed.In stage two,the GaN-NWs with large electron mobility were used to accelerate the transfer of photogenerated carriers in the BHJ layer.Finally,compared with the BHJ device,the BHJ/GaN device demonstrated obvious improvements in responsivity and photocurrent at the wavelength between 400 and 1000 nm.The responsivity and photocurrent increased over 20-fold at the NIR band of 800e900 nm.Besides,owing to the energy level gradient effect,the BHJ/GaN device has a response speed of 7.8/<5.0 ms,which increases over three orders of magnitude than that of the GaN-NWs-based device(tr/tf:7.1/10.9 s).Therefore,the novel device structure proposed in this work holds great potential for preparing high-performance Vis-NIR photodetectors.展开更多
In this work, it is presented the synthesis and characterization of transparent and colorless organic-inorganic hybrid anti-graffiti protective materials obtained by sol-gel method. This type of materials is based on ...In this work, it is presented the synthesis and characterization of transparent and colorless organic-inorganic hybrid anti-graffiti protective materials obtained by sol-gel method. This type of materials is based on MTES (methyltriethoxysilane), TPOZ (tetrapropoxide of zirconium) and PDMS (polydimethylsiloxane). The synthesis has been carried out at 25, 35 and 45 ℃ in order to evaluate the role of temperature in the structure, microstructure and anti-graffiti behavior as well. The incorporation of zirconium within the organic modified silica network, of sols after being gelled and dried, is evident by a shoulder which increased with temperature situated at 950 cml (Si-O-Zr bonds), and it is homogenously dispersed inside the matrix avoiding the formation of large ZrO2 precipitates. As the temperature increases, the hydrolysis and condensation reactions occur in more extension and thus, the obtained sols are more cross-linked and present more Si-O-Zr linkages. The promising anti-graffiti beha'4ior of the protectNe hybrids was qualitatively determined being the spot removal higher than 90%.展开更多
Perovskite and organic solar cells usually require electron-transport interlayers to efficiently transport electrons from the photoactive layer to the metal electrode.In general,pure organic or inorganic materials are...Perovskite and organic solar cells usually require electron-transport interlayers to efficiently transport electrons from the photoactive layer to the metal electrode.In general,pure organic or inorganic materials are applied into the interlayers,but organic–inorganic hybrid materials have been rarely reported for this application.In this work,we report using the first titanium-oxo cluster-based organic–inorganic hybrid as the interlayer material by introducing largeπ-conjugated benzo[ghi]perylenetriimides as an organic part via a simple ligand-exchange reaction.This new hybrid material showed excellent solubility,well-aligned energy levels,and excellent electron mobilities,enabling its great potential application as an interlayer in solar cells such as perovskite and organic solar cells,providing high power conversion efficiencies of>20%and 16%,respectively.Therefore,we claim that our present work introduces a new class of cluster-based organic–inorganic hybrid interlayer materials that exhibit promising application in organic electronics.展开更多
Immobilization is an effective method to promote the application of enzyme industry for improving the stability and realizing recovery of enzyme.To some extent,the performance of immobilized enzyme depends on the choi...Immobilization is an effective method to promote the application of enzyme industry for improving the stability and realizing recovery of enzyme.To some extent,the performance of immobilized enzyme depends on the choice of carrier material.Therefore,the development of new carrier materials has been one of the key issues concerned by enzyme immobilization researchers.In this work,a novel organic–inorganic hybrid material,nickel-carnosine complex(NiCar),was synthesized for the first time by solvothermal method.The obtained NiCar exhibits spherical morphology,hierarchical porosity and abundant unsaturated coordination nickel ions,which provide excellent anchoring sites for the immobilization of proteins.His-tagged organophosphate-degrading enzyme(Opd A)and x-transaminase(ω-TA)were used as model enzymes to evaluate the performance of NiCar as a carrier.By a simple adsorption process,the enzyme molecules can be fixed on the particles of NiCar,and the stability and reusability are significantly improved.The analysis of protein adsorption on NiCar verified that the affinity adsorption between the imidazole functional group on the protein and the unsaturated coordination nickel ions on NiCar was the main force in the immobilization process,which provided an idea way for the development of new enzyme immobilization carriers.展开更多
Superconductivity at the 2D limit shows emergent novel quantum phenomena, including anomalously enhanced H_(c2),quantum metallic states and quantum Griffiths singularity, which has attracted much attention in the fiel...Superconductivity at the 2D limit shows emergent novel quantum phenomena, including anomalously enhanced H_(c2),quantum metallic states and quantum Griffiths singularity, which has attracted much attention in the field of condensed matter physics. In this article, we focus on new advances in quasi-2D superconductors in the bulk phase using an organic molecular electrochemical intercalation method. The enhanced superconductivity and emergent pseudogap behavior in these quasi-2D superconductors are summarized with a further prospect.展开更多
The reaction of Ni(CH3COO)2-4H2O, Na2MoO4·H2O, MoO3, 1,10-phenanthroline and 1,4-butylenediphosphonic acid in distilled water at 180℃ for 72 h produced two new compounds: {[Ni(1,10-phen)3][Ni(1,10-phen)2...The reaction of Ni(CH3COO)2-4H2O, Na2MoO4·H2O, MoO3, 1,10-phenanthroline and 1,4-butylenediphosphonic acid in distilled water at 180℃ for 72 h produced two new compounds: {[Ni(1,10-phen)3][Ni(1,10-phen)2(Mo6O18)(O3P(CH2)4PO3)]·6H2O}n 1 in 15% yield and {[Ni(1,10-phen)2(H2O)2] [Ni(1,10-phen)2 (H2O)(Mo5O15)(O3P(CH2)4PO3)]·6H2O} n 2 in 47% yield. 1 and 2 both feature {MonO3nO3P(CH2)4PO3}^4-(n=5, 6) 1-D anionic chain, which is further decorated and charge compensated by [Ni(1,10-phen)2]^2+. 1 contains {Mo6O24P2} cluster constructed of three pairs of face-sharing {MoO6} octahedra linked through corner-sharing interaction. 2 exhibits the characteristic structure based on pentanuclear ring of comer- and edge-sharing {MoO6} octahedra capped by three oxygen atoms of {PO3} on each side. The thermogravimetric analyses and magnetic property of 2 were also studied.展开更多
A composite ion exchange material, polyaniline stannic silicate was prepared under different experimental conditions. Ion exchange material synthesized at pH 1.0 shows an ion exchange capacity 1.6 meq/g for Na+ ions. ...A composite ion exchange material, polyaniline stannic silicate was prepared under different experimental conditions. Ion exchange material synthesized at pH 1.0 shows an ion exchange capacity 1.6 meq/g for Na+ ions. The exchanger has been characterized on the basis of X-ray and TGA. Ion exchange capacity, pH titration, elution and distribution studies were also carried out to determine the preliminary ion exchange properties of the material. The effect of temperature on the ion exchange capacity of the material at different temperatures has been studied. The sorption behavior of metal ions was also explored in different surfactant mediums. The practical utility of the material was explored by achieving quantitative separation of toxic metal ions in synthetic mixtures.展开更多
文摘Poly (EA-MAn-APTES)/silica hybrid materials were successfully prepared fromEthyl acrylate (EA), maleic anhydride (MAn) and tetraethoxysilane (TEOS) in the presence of acoupling agent 3-aminopropyltriethoxysilane (APTES),by free-radical solution polymerization and insitu sol-gel process. The mass fraction of TEOS varied from 0 to 25%. The hybrid materials werecharacterized by the methods of FT-IR spectra, solvent extraction, scanning electron microscope (SEM), transmission electron microscope (TEM), differential scanning calorimetry (DSC) andthermogravimetric analysis (TGA) measuring apparatus to get their structures, gel contents,morphologies, particle sizes and thermal performances. The results show that the covalent bonds arebetween organic and inorganic phases, gel contents in the hybrid materials are much higher, theSiO_2 phase is well dispersed in the polymer matrix, silicon dioxide exist at nanoscale in thecomposites and have excellent thermal stability.
基金supported by the Fundamental-Core National Project of the National Research Foundation(NRF)funded by the Ministry of Science and ICT,Republic of Korea(2022R1F1A1072739).
文摘Layered double hydroxides(LDH)frameworks have shown significant enhancement in stability and reusability,and their tailorable architecture brings new insight into the development of the next generation of hybrid materials,which attracted considerable attention in many fields over the years.One of the factors contributing to the widespread applicability of layered double hydroxides is their adaptable composition,which can accommodate a wide spectrum of potential anionic guests.This exceptional property makes the LDH system simple to adjust for various applications.However,most LDH systems are synthesized in situ in an autoclave at high temperatures and pressures that severely restrict the industrial use of such coating systems.In this study,LDH was directly synthesized on a magnesium alloy that had undergone plasma electrolytic oxidation(PEO)treatment in the presence of ethylenediaminetetraacetic acid,thereby avoiding the use of hydrothermal autoclave conditions.This LDH system was compared with a hybrid architecture consisting of organic-inorganic self-assembly.An organic layer was fabricated on top of the LDH film using 4-Aminophenol(Aph)compound,resulting in a smart hierarchical structure that can provide a robust Aph@LDH film with excellent anti-corrosion performance.At the molecular level,the conjugation characteristics and adsorption mechanism of Aph molecule were studied using two levels of theory as follows.First,Localized orbit locator(LOL)-πisosurface,electrostatic potential(ESP)distribution,and average local ionization energy(ALIE)on the molecular surface were used to highlight localization region,reveal the favorable electrophilic and nucleophilic attacks,and clearly explore the type of interactions that occurred around interesting regions.Second,first-principles based on density functional theory(DFT)was applied to study the hybrid mechanism of Aph on LDH system and elucidate their mutual interactions.The experimental and computational analyses suggest that the highπ-electron density and delocalization characteristics of the functional groups and benzene ring in the Aph molecule played a leading role in the synergistic effects arising from the combination of organic and inorganic coatings.This work provides a promising approach to design advanced hybrid materials with exceptional electrochemical performance.
基金supported by the National Natural Science Foundation of China (20873021,21003020)Doctoral Fund of Ministry of Education of China (20093514120002)New Century Excellent Talent Supported Plan of Fujian Province (SXSJRC2007-21)
文摘A polyoxovanadium borate [Na(H2O)]2[Na(H2O)2]2[Cu(en)2][V12B18O54(OH)6]·(H3O)2·(H2O)18 1(en = ethylenediamine) has been hydrothermally synthesized and characterized by IR,two-dimensional infrared(2D IR) correlation spectroscopy with magnetic and thermal perturba-tion,thermal IR spectroscopy,thermal gravimetric analysis and single-crystal X-ray diffraction.It crystallizes in triclinic,space group P with a = 12.981(3),b = 13.044(3),c = 14.208(3) ,α = 63.98(3),β = 77.17(3),γ = 14.208(3)°,V = 2001.0(8) 3,Z = 1,Mr = 2518.05,Dc = 2.090 g/cm-1,F(000) = 1255.0,Mu(mm-1) = 1.756,λ(MoKα) = 0.71073 ,R = 0.0625 and wR = 0.1952.In 1,the [V12B18O54(OH)6]8- units are connected by [Cu(en)2]2+,binuclear Na(1) and Na(2) to form a three-dimensional porous framework.
基金supported by the National Natural Science Foundation of China (51203071, 51363014 and 51463012)China Postdoctoral Science Foundation (2014M552509, 2015T81064)+2 种基金Natural Science Funds of the Gansu Province (2015GS05123)Program for Hongliu Distinguished Young Scholars in Lanzhou University of Technology (J201402)University Scientific Research Project of Gansu Province (2014B-025)
文摘Hybrid materials of vanadium nitride and porous carbon nanoparticles(VN/PCNPs) were fabricated by a facile pyrolysis process of vanadium pentoxide(V_2O_5) xerogel and melamine at relatively low temperature of 800 °C for supercapacitor application. The effects of the feed ratio of V_2O_5 to melamine(r), and nitrogen flow rate on the microstructure and electrochemical performance were also investigated. It was found that the size of the as-synthesized nanoparticles is about 20 nm. Both r value and N_2 flow rate have enormous impacts on morphology and microstructure of the nanoparticle, which correspondingly determined the electrochemical performance of the material. The VN/C hybrid nanoparticles exhibited high capacitive properties, and a maximum specific capacitance of 255.0 Fg^(-1) was achieved at a current density of 1.0 Ag^(-1) in 2 M KOH aqueous electrolyte and the potential range from 0 to -1.15 V. In addition,symmetrical supercapacitor fabricated with the as-synthesized VN/PCNPs presents a high specific capacitance of 43.5 F g^(-1) at 0.5 A g^(-1) based on the entire cell, and an energy density of 8.0 Wh kg^(-1) when the power density was 575 W kg^(-1). Even when the power density increased to 2831.5 W kg^(-1), the energy density still remained 6.1 Wh kg^(-1).
基金financially supported by the Fundamental Research Funds of the Central Universities(No.531118010112)the Double FirstClass University Initiative of Hunan University(No.531109100004)+1 种基金the Fundamental Research Funds of the Central Universities(No.531107051048)support from the Hunan Key Laboratory of TwoDimensional Materials(No.801200005)。
文摘Potassium-ion hybrid capacitors(KIHCs) have attracted increasing research interest because of the virtues of potassium-ion batteries and supercapacitors.The development of KIHCs is subject to the investigation of applicable K+storage materials which are able to accommodate the relatively large size and high activity of potassium.Here,we report a cocoon silk chemistry strategy to synthesize a hierarchically porous nitrogen-doped carbon(SHPNC).The as-prepared SHPNC with high surface area and rich N-doping not only offers highly efficient channels for the fast transport of electrons and K ions during cycling,but also provides sufficient void space to relieve volume expansion of electrode and improves its stability.Therefore,KIHCs with SHPNC anode and activated carbon cathode afford high energy of 135 Wh kg-1(calculated based on the total mass of anode and cathode),long lifespan,and ultrafast charge/slow discharge performance.This study defines that the KIHCs show great application prospect in the field of high-performance energy storage devices.
基金This work was financially supported by the Program of National Natural Science Foundation of China(No.51472166)Liaoning BaiQianWan Talents program.
文摘Graphene-based composites took extensive attraction as electrodes for supercacitors these years.Three-dimensional cross-linking porous graphene(3D rGO-m)was obtained by KOH activation to graphene modified by 1,2,4-triaminobenzene.3D porous graphene/polyaniline hybrids(3D rGO-m/PANI)was prepared by the in-situ chemical oxidative polymerization.The rGO-m are reconstructed from 2D to 3D porous structure after KOH activation.The PANI nanorod arrays are successfully decorated on the surface of the 3D porous graphene sheets.The specific capacitance of the 3D rGO-m/PANI hybrids reach 985 F/g at 0.5 A/g.The capacitance retention of 3D rGO-m/PANI maintains 90%of its initial capacity after 1000 cycles,while rGO-m/PANI only keeps 83%of its initial capacity,the cycling stability of both hybrids are higher than that of pure PANI(69%).
基金supported by the National Natural Science Foundation of China(11725418,21975140)Ministry of Science and Technology of China(2016YFA0301004,2016YFA0301001 and2015CB921001)+1 种基金the Basic Science Center Program of NSFC(51788104)Beijing Advanced Innovation Center for Future Chip(ICFC).
文摘Inducing or enhancing superconductivity in topological materials is an important route toward topological superconductivity.Reducing the thickness of transition metal dichalcogenides(e.g.WTe2 and MoTe2)has provided an important pathway to engineer superconductivity in topological matters.However,such monolayer sample is difficult to obtain,unstable in air,and with extremely low Tc.Here we report an experimentally convenient approach to control the interlayer coupling to achieve tailored topological properties,enhanced superconductivity and good sample stability through organic-cation intercalation of the Weyl semimetals MoTe2 and WTe2.The as-formed organic-inorganic hybrid crystals are weak topological insulators with enhanced Tc of 7.0 K for intercalated MoTe2(0.25 K for pristine crystal)and2.3 K for intercalated WTe2(2.8 times compared to monolayer WTe2).Such organic-cation intercalation method can be readily applied to many other layered crystals,providing a new pathway for manipulating their electronic,topological and superconducting properties.
基金Project supported by the National Natural Science Foundation of Hubei Province (No. 2003ABA085).
文摘A new organic-inorganic hybrid compound (dienHs)2(P2Mo5O23) (1) [dien=NH(CH2CH2NH2)2] has been hydrothermally synthesized and characterized by elemental analyses, IR spectrum, thermogravimetric analysis, and the single crystal X-ray diffraction technique. Compound 1 crystallizes in the triclinic system with space group P1 and a=0.9790(2) nm, b=0.9922(2) nm, c= 1.4644(3) nm, α=95.510(10)°, β=98.860(10)°, γ=95.700(10)°, V=1.3895(5) nm^3, Z=2, R=0.0465. The results show that the compound consists of dienH3^3++ and P2Mo5O23^6-, and the heteropoly anion P2Mo5O23^6- is connected to a 1-D chain structure with the protonated dien by hydrogen bonds.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 20821091 and 20771009)
文摘Since the discovery of a surfactant directed self-assembly approach for the fabrication of mesoporous silica in 1992,increasing attention has been focused on the design and synthesis of mesostructured functional materials.Organic functionalization is becoming a major topic in this research field,since highly ordered mesostructured organic-inorganic hybrids offer novel functionalities and enhanced performance over their individual components.We begin with a brief overview of the three fundamental methods(post-synthetic grafting technique,co-condensation method,and preparation of periodic mesoporous organosilicas) for the preparation of organically functionalized mesostructured silica,and focus on one of the most promising approaches,which herein was named as functional-template directed self-assembly(FTDSA) approach,and in the eyes of the authors it has a special position in the preparation of this class of hybrid materials.A comprehensive overview of the state of research in the area of FTDSA and its potential applications will be given.
基金This work was supported by Science and Technology Commission of Shanghai Municipal, Ministry of ScienceTechnology of China (2001CCA04600) Shanghai Applied Materials (AM) project.
文摘2×2 Mach-Zehnder interferometric thermo-optic switch was fabricated with organic/inorganic hybrid materials by sol-gel technique and direct UV patterning. The switching time of device was measured to be 4.2 ms and switching power 9.3 mW.
基金This work was supported by Key Program for International S&T Cooperation Projects of China(No.2017YFE0124300)Anhui Province Key Laboratory of Coal Clean Conversion and High Valued Utilization(CHV21-04)Natural Science Foundation of Anhui Province(1708085QB33).
文摘Zinc-ion hybrid supercapacitors (ZHSs), which combine the superiority of batteries and supercapacitors, will become a new development direction in the field of energy storage. The development of ZHSs with high capacity and high stability can be further promoted by heteroatom doping or structural modification of cathode materials. Herein, N,O,P co-doped porous carbon materials were synthesized by a facile method using coal tar pitch as precursor, aluminum phosphate as template, and sodium hydroxide as activator. Due to the high specific surface area and abundant micropores, the heteroatom-doped porous carbon materials were employed as cathode for aqueous ZHSs to study the electrochemical performance. Benefitted from the rich micropores and heteroatom doping, the porous carbon electrodes exhibit an outstanding electrochemical performance and deliver a large specific capacitance of 113.3 mA h g 1 at 0.1 A g 1. In addition, the porous carbon electrode shows a high energy density of 64.9 Wh kg 1 and a high power density of 1.23 kW kg 1, which outperforms most aqueous ZHS energy storage systems previously reported. Interestingly, after 5000 cycles at 1 A g 1, the specific capacity is about 36% higher than the original capacity and the coulomb efficiency still remains nearly 100%. The article may provide a new insight into exploring cathode materials for high-performance aqueous rechargeable zinc-ion energy storage devices.
基金financial support from Hainan Province Natural Science Foundation of China (No. 219QN151)the National Natural Science Foundation of China (21801052)+1 种基金Hainan University Start-up Fund (No. KYQD(ZR)1852)the Construction Program of Research Platform in Hainan University (No. ZY2019HN09)。
文摘Titanium dioxide(TiO_(2))has been limited in photocatalysis due to its wide band gap(3.2 eV)and limited absorption in the ultraviolet range.Therefore,organic components have been introduced to hybrid with TiO_(2) for enhanced photocatalytic efficiency under visible light.Here,we report that benzo[1,2-b:4,5-b']dithiophene polymer was an ideal organic material for the preparation of a hybrid material with TiO_(2).The energy band gap of the resulting hybrid material decreased to 2.9 eV and the photocatalytic hydrogen production performance reached 745.0μmol g^(-1) h^(-1) under visible light irradiation.Meanwhile,the material still maintained the stability of hydrogen production performance after 40 h of photocatalytic cycles.The analysis of the transient current response and electrochemical impedance revealed that the main reasons for the enhanced water splitting of the hybrid materials were the faster separation of electron hole pairs and the lower recombination of photocarrier ions.Our findings suggest that polythiophene is a promising organic material for exploring hybrid materials with enhanced photocatalytic hydrogen production.
文摘Polyaniline stannic molybdate—an organic-inorganic composite material, was prepared via sol-gel mixing of organic polymer polyaniline into matrices of inorganic precipitate of stannicmolybdate. The composite material synthesized at pH 1.2 showed an ion exchange capacity 1.8 meq/g for Na+?ions. Ion exchange capacity, pH titration and distribution studies were carried out to determine the preliminary ion exchange properties of the material. The distribution studies showed the selectivity of Hg(II) ions by this material. The effect of temperature on the ion exchange capacity of the material at different temperatures had been studied. The sorption behavior of metal ions was also explored in different surfactant media.
文摘The narrow bandgap of the low-energy near-infrared(NIR)polymer would lead to overlap between adjacent energy levels,which is a major barrier to the preparation of Vis-NIR polymer bulk hetero-junction(BHJ)photodetectors with small responsivity and photocurrent.In this study,a high-performance lateral inorganic-organic hybrid photodetector was constructed to eliminate this barrier by combining GaN nanowires(GaN-NWs)with PDPP3T:PC61BM-based BHJ.In stage one,high-quality GaN-NWs were synthesized by the catalyst-free CVD method.The mechanism for controlling GaN-NWs morphology by adjusting the NH3 flow rate was revealed.In stage two,the GaN-NWs with large electron mobility were used to accelerate the transfer of photogenerated carriers in the BHJ layer.Finally,compared with the BHJ device,the BHJ/GaN device demonstrated obvious improvements in responsivity and photocurrent at the wavelength between 400 and 1000 nm.The responsivity and photocurrent increased over 20-fold at the NIR band of 800e900 nm.Besides,owing to the energy level gradient effect,the BHJ/GaN device has a response speed of 7.8/<5.0 ms,which increases over three orders of magnitude than that of the GaN-NWs-based device(tr/tf:7.1/10.9 s).Therefore,the novel device structure proposed in this work holds great potential for preparing high-performance Vis-NIR photodetectors.
文摘In this work, it is presented the synthesis and characterization of transparent and colorless organic-inorganic hybrid anti-graffiti protective materials obtained by sol-gel method. This type of materials is based on MTES (methyltriethoxysilane), TPOZ (tetrapropoxide of zirconium) and PDMS (polydimethylsiloxane). The synthesis has been carried out at 25, 35 and 45 ℃ in order to evaluate the role of temperature in the structure, microstructure and anti-graffiti behavior as well. The incorporation of zirconium within the organic modified silica network, of sols after being gelled and dried, is evident by a shoulder which increased with temperature situated at 950 cml (Si-O-Zr bonds), and it is homogenously dispersed inside the matrix avoiding the formation of large ZrO2 precipitates. As the temperature increases, the hydrolysis and condensation reactions occur in more extension and thus, the obtained sols are more cross-linked and present more Si-O-Zr linkages. The promising anti-graffiti beha'4ior of the protectNe hybrids was qualitatively determined being the spot removal higher than 90%.
基金supported by MOST(nos.2018YFA0208504 and 2017YFA0204702)NSFC(51773207,52073016,5197030531,and 21801213)of China+2 种基金The Fundamental Research Funds for the Central Universities further supported this work(no.XK1802-2)Open Project of State Key Laboratory of Supramolecular Structure and Materials(no.sklssm202043)Jiangxi Provincial Department of Science and Technology(nos.20192ACB20009,20192BBEL50026,20202ACBL213004,and 20203BBE53062).
文摘Perovskite and organic solar cells usually require electron-transport interlayers to efficiently transport electrons from the photoactive layer to the metal electrode.In general,pure organic or inorganic materials are applied into the interlayers,but organic–inorganic hybrid materials have been rarely reported for this application.In this work,we report using the first titanium-oxo cluster-based organic–inorganic hybrid as the interlayer material by introducing largeπ-conjugated benzo[ghi]perylenetriimides as an organic part via a simple ligand-exchange reaction.This new hybrid material showed excellent solubility,well-aligned energy levels,and excellent electron mobilities,enabling its great potential application as an interlayer in solar cells such as perovskite and organic solar cells,providing high power conversion efficiencies of>20%and 16%,respectively.Therefore,we claim that our present work introduces a new class of cluster-based organic–inorganic hybrid interlayer materials that exhibit promising application in organic electronics.
文摘Immobilization is an effective method to promote the application of enzyme industry for improving the stability and realizing recovery of enzyme.To some extent,the performance of immobilized enzyme depends on the choice of carrier material.Therefore,the development of new carrier materials has been one of the key issues concerned by enzyme immobilization researchers.In this work,a novel organic–inorganic hybrid material,nickel-carnosine complex(NiCar),was synthesized for the first time by solvothermal method.The obtained NiCar exhibits spherical morphology,hierarchical porosity and abundant unsaturated coordination nickel ions,which provide excellent anchoring sites for the immobilization of proteins.His-tagged organophosphate-degrading enzyme(Opd A)and x-transaminase(ω-TA)were used as model enzymes to evaluate the performance of NiCar as a carrier.By a simple adsorption process,the enzyme molecules can be fixed on the particles of NiCar,and the stability and reusability are significantly improved.The analysis of protein adsorption on NiCar verified that the affinity adsorption between the imidazole functional group on the protein and the unsaturated coordination nickel ions on NiCar was the main force in the immobilization process,which provided an idea way for the development of new enzyme immobilization carriers.
基金Project supported by the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No. XDB25000000)the National Natural Science Foundation of China (Grant No. 11888101)+2 种基金the National Key R&D Program of China (Grant No. 2017YFA0303001)the Anhui Initiative in Quantum Information Technologies, China (Grant No. AHY160000)the Key Research Program of Frontier Sciences, CAS (Grant No. QYZDYSSW-SLH021)。
文摘Superconductivity at the 2D limit shows emergent novel quantum phenomena, including anomalously enhanced H_(c2),quantum metallic states and quantum Griffiths singularity, which has attracted much attention in the field of condensed matter physics. In this article, we focus on new advances in quasi-2D superconductors in the bulk phase using an organic molecular electrochemical intercalation method. The enhanced superconductivity and emergent pseudogap behavior in these quasi-2D superconductors are summarized with a further prospect.
基金Supported by the State Key Laboratory of Structural Chemistry, the National Science and Technology of China (001CB1089), the Chinese Academy of Sciences (CAS), the National Natural Science Foundation of China (20273073, 20333070 and 90206040), Key Item of Science and Technology of Fujian Province (2004 1+201-2), the Science Foundation of CAS and Fujian Province (2002F014, 2003J042, 2004J041 and Z0513022)
文摘The reaction of Ni(CH3COO)2-4H2O, Na2MoO4·H2O, MoO3, 1,10-phenanthroline and 1,4-butylenediphosphonic acid in distilled water at 180℃ for 72 h produced two new compounds: {[Ni(1,10-phen)3][Ni(1,10-phen)2(Mo6O18)(O3P(CH2)4PO3)]·6H2O}n 1 in 15% yield and {[Ni(1,10-phen)2(H2O)2] [Ni(1,10-phen)2 (H2O)(Mo5O15)(O3P(CH2)4PO3)]·6H2O} n 2 in 47% yield. 1 and 2 both feature {MonO3nO3P(CH2)4PO3}^4-(n=5, 6) 1-D anionic chain, which is further decorated and charge compensated by [Ni(1,10-phen)2]^2+. 1 contains {Mo6O24P2} cluster constructed of three pairs of face-sharing {MoO6} octahedra linked through corner-sharing interaction. 2 exhibits the characteristic structure based on pentanuclear ring of comer- and edge-sharing {MoO6} octahedra capped by three oxygen atoms of {PO3} on each side. The thermogravimetric analyses and magnetic property of 2 were also studied.
文摘A composite ion exchange material, polyaniline stannic silicate was prepared under different experimental conditions. Ion exchange material synthesized at pH 1.0 shows an ion exchange capacity 1.6 meq/g for Na+ ions. The exchanger has been characterized on the basis of X-ray and TGA. Ion exchange capacity, pH titration, elution and distribution studies were also carried out to determine the preliminary ion exchange properties of the material. The effect of temperature on the ion exchange capacity of the material at different temperatures has been studied. The sorption behavior of metal ions was also explored in different surfactant mediums. The practical utility of the material was explored by achieving quantitative separation of toxic metal ions in synthetic mixtures.