Recent regenerative medicine and tissue engineering strategies(using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications....Recent regenerative medicine and tissue engineering strategies(using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications. In the past decade, great deal of research has focused on developing various three dimensional(3D) organs, such as bone, skin, liver, kidney and ear,using such strategies in order to replace or regenerate damaged organs for the purpose of maintaining or restoring organs' functions that may have been lost due to aging, accident or disease. The surface properties of a material or a device are key aspects in determining the success of the implant in biomedicine, as the majority of biological reactions in human body occur on surfaces or interfaces. Furthermore, it has been established in the literature that cell adhesion and proliferation are, to a great extent, influenced by the micro- and nanosurface characteristics of biomaterials and devices. In addition, it has been shown that the functions of stem cells, mesenchymal stem cells in particular, could be regulated through physical interaction with specific nanotopographical cues. Therefore, guided stem cell proliferation, differentiation and function are of great importance in the regeneration of 3D tissues and organs using tissue engineering strategies. This review will provide an update on the impact of nanotopography on mesenchymal stem cells for the purpose of developing laboratory-based 3D organs and tissues, as well as the most recent research and case studies on this topic.展开更多
Adequate vascularization is a critical determinant for the successful construction and clinical implementation of complex organotypic tissue models. Currently, low cell and vessel density and insufficient vascular mat...Adequate vascularization is a critical determinant for the successful construction and clinical implementation of complex organotypic tissue models. Currently, low cell and vessel density and insufficient vascular maturation make vascularized organotypic tissue construction difficult,greatly limiting its use in tissue engineering and regenerative medicine. To address these limitations, recent studies have adopted pre-vascularized microtissue assembly for the rapid generation of functional tissue analogs with dense vascular networks and high cell density. In this article, we summarize the development of module assembly-based vascularized organotypic tissue construction and its application in tissue repair and regeneration, organ-scale tissue biomanufacturing, as well as advanced tissue modeling.展开更多
Three-dimensional(3D)bioprinting is a rapidly growing technology that has been widely used in tissue engineering,disease studies,and drug screening.It provides the unprecedented capacity of depositing various types of...Three-dimensional(3D)bioprinting is a rapidly growing technology that has been widely used in tissue engineering,disease studies,and drug screening.It provides the unprecedented capacity of depositing various types of biomaterials,cells,and biomolecules in a layer-by-layer fashion,with precisely controlled spatial distribution.This technology is expected to address the organ-shortage issue in the future.In this review,we first introduce three categories of 3D bioprinting strategies:inkjet-based printing(IBP),extrusion-based printing(EBP),and light-based printing(LBP).Biomaterials and cells,which are normally referred to as“bioinks,”are then discussed.We also systematically describe the recent advancements of 3D bioprinting in fabricating cell-laden artificial tissues and organs with solid or hollow structures,including cartilage,bone,skin,muscle,vascular network,and so on.The development of organs-onchips utilizing 3D bioprinting technology for drug discovery and toxicity testing is reviewed as well.Finally,the main challenges in current studies and an outlook of the future research of 3D bioprinting are discussed.展开更多
Wound healing,tissue repair and regenerative medicine are in great demand,and great achievements in these fields have been made.The traditional strategy of tissue repair and regeneration has focused on the level of ti...Wound healing,tissue repair and regenerative medicine are in great demand,and great achievements in these fields have been made.The traditional strategy of tissue repair and regeneration has focused on the level of tissues and organs directly;however,the basic process of repair at the cell level is often neglected.Because the cell is the basic unit of organism structure and function;cell damage is caused first by ischemia or ischemia-reperfusion after severe trauma and injury.Then,damage to tissues and organs occurs with massive cell damage,apoptosis and even cell death.Thus,how to achieve the aim of perfect repair and regeneration?The basic process of tissue or organ repair and regeneration should involve repair of cells first,then tissues and organs.In this manuscript,it is my consideration about how to repair the cell first,then regenerate the tissues and organs.展开更多
Objective To provide basis of reference values for relevant parameters of Chinese Reference Man. Methods Eighteen kinds of major organ or tissue samples, including muscle, rib, liver, and so on, were obtained from 4 a...Objective To provide basis of reference values for relevant parameters of Chinese Reference Man. Methods Eighteen kinds of major organ or tissue samples, including muscle, rib, liver, and so on, were obtained from 4 areas (Hebei, Shanxi, Jiangsu, and Sichuan provinces) with different dietary patterns in China in autopsy of 16 healthy adult men, who had just encountered sudden deaths. At the same time, whole blood samples were collected from 10 volunteers living in each of these areas. The concentrations of 56 elements in these samples were detected by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), and Graphite Furnace Atomic Absorption Spectrometry (GF-AAS) techniques. Based on obtained concentrations and reference values of these organ or tissue weights for Chinese Reference Man, the relative elemental burdens in these organs or tissues as well whole body were also estimated. Results The concentrations of 56 elements in 18 main organs or tissues were determined all together and their elemental organ or tissue and whole body burdens were estimated. Furthermore, the distributions of important elements for radiation protection in these organs or tissues were emphatically discussed. Conclusion By summing with past related results, the total results obtained from the series of research may provide more reliable and better representative basis of these reference values for Chinese Reference Man than before.展开更多
Ovarian cancer mostly presents with extensive peritoneal cavity and extraperitoneal dissemination. Satisfactory and complete resection of the lesions is one of the key factors to improve the prognosis. The trend of su...Ovarian cancer mostly presents with extensive peritoneal cavity and extraperitoneal dissemination. Satisfactory and complete resection of the lesions is one of the key factors to improve the prognosis. The trend of surgical resection of extra-ovarian tissues and organs invaded by the tumor has become obvious in order to remove all primary loci and all metastases as much as possible to minimize residual tumor lesions. This article provides a literature review on organ resection in ovarian cancer cytoreduction, summarizing the perioperative complications and survival outcomes at the time of different organ surgery, with the aim of providing guidance for clinical work.展开更多
Background:A growing body of evidence has revealed that the mammalian genome is organized into hierarchical layers that are closely correlated with and may even be causally linked with variations in gene expression.Re...Background:A growing body of evidence has revealed that the mammalian genome is organized into hierarchical layers that are closely correlated with and may even be causally linked with variations in gene expression.Recent studies have characterized chromatin organization in various porcine tissues and cell types and compared them among species and during the early development of pigs.However,how chromatin organization differs among pig breeds is poorly understood.Results:In this study,we investigated the 3D genome organization and performed transcriptome characterization of two adipose depots(upper layer of backfat[ULB]and greater omentum[GOM])in wild boars and Bama pigs;the latter is a typical indigenous pig in China.We found that over 95%of the A/B compartments and topologically associating domains(TADs)are stable between wild boars and Bama pigs.In contrast,more than 70%of promoterenhancer interactions(PEIs)are dynamic and widespread,involving over a thousand genes.Alterations in chromatin structure are associated with changes in the expression of genes that are involved in widespread biological functions such as basic cellular functions,endocrine function,energy metabolism and the immune response.Approximately 95%and 97%of the genes associated with reorganized A/B compartments and PEIs in the two pig breeds differed between GOM and ULB,respectively.Conclusions:We reported 3D genome organization in adipose depots from different pig breeds.In a comparison of Bama pigs and wild boar,large-scale compartments and TADs were mostly conserved,while fine-scale PEIs were extensively reorganized.The chromatin architecture in these two pig breeds was reorganized in an adipose depotspecific manner.These results contribute to determining the regulatory mechanism of phenotypic differences between Bama pigs and wild boar.展开更多
Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hi...Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hibernation techniques,mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury.However,its technical defects and barriers,along with serious clinical side effects,restrict its clinical application for spinal cord injury.Artificial hibernation is a futureoriented disruptive technology for human life support.It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons,reduce the central constant temperature setting point,disrupt the normal constant body temperature,make the body adapt"to the external cold environment,and reduce the physiological resistance to cold stimulation.Thus,studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology.This review introduces artificial hibernation technologies,including mild hypothermia technology,hibernation inducers,and hibernation-related central neuromodulation technology.It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection.These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal co rd injury through inflammatory inhibition,immunosuppression,oxidative defense,and possible central protection.It also promotes the repair and protection of res pirato ry and digestive,cardiovascular,locomoto r,urinary,and endocrine systems.This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation.At present,artificial hibernation technology is not mature,and research fa ces various challenges.Neve rtheless,the effort is wo rthwhile for the future development of medicine.展开更多
Maize plant architecture influences planting density and,in turn,grain yield.Most of the plant architecture-related traits can be described as organ size.We describe a miniature maize mutant,Tiny plant 4(Tip4),which e...Maize plant architecture influences planting density and,in turn,grain yield.Most of the plant architecture-related traits can be described as organ size.We describe a miniature maize mutant,Tiny plant 4(Tip4),which exhibits reduced size of multiple organs and exhibits a semi-dominant monofactorial inheritance characteristic.Positional cloning confirmed that a 4-bp deletion in the NAC TF with transmembrane motif 1-Like(NTL)gene ZmNTL2,denoted as ZmNTL2^(Δ),confers the Tip4 mutation.qRT-PCR showed that ZmNTL2 was expressed in all tested tissues.ZmNTL2 functions as a transcriptional activator and is located in both the nucleus and biomembranes.The mutation does not affect the mRNA abundance of ZmNTL2 locus,but it does result in the loss of transmembrane domain and confines the ZmNTL2^(Δ)protein to the nucleus.Knocking out ZmNTL2 has no effect on maize organ size development,indicating that the 4-bp deletion might be a gain-of-function mutation in organ size regulation.Combining transcriptome sequencing with cytokinin and auxin content determination suggests that the decreased organ size may be possibly mediated by changes in hormone homeostasis.展开更多
Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate cl...Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate climate change effects.The effect of elevation on tree growth may depend on organ type.However,the allocation patterns of nonstructural and structural carbohydrates(NSCs and SCs,respectively)in different tree organs and their response to elevation remain unclear.We selected four dominant tree species,Schima superba,Castanopsis eyrei,Castanopsis fargesii and Michelia maudiae,along an elevation gradient from 609 to 1,207 m in subtropical evergreen broad-leaved forests and analyzed leaf,trunk,and fine root NSCs,carbon(C),nitrogen(N)and phosphorus(P)concentrations and the relative abundance of SCs.Leaf NSCs increased initially and then decreased,and trunk NSCs increased with increasing elevation.However,root NSCs decreased with increasing elevation.The relative abundance of SCs in leaves and trunks decreased,while the relative abundance of root SCs increased with increasing elevation.No significant correlations between SCs and NSCs in leaves were detected,while there were negative correlations between SCs and NSCs in trunks,roots,and all organs.Hierarchical partitioning analysis indicated that plant C/N and C/P were the main predictors of changes in SCs and NSCs.Our results suggest that tree organs have divergent responses to elevation and that increasing elevation will inhibit the aboveground part growth and enhance the root growth of trees.A tradeoff between the C distribution used for growth and storage was confirmed along the elevation gradient,which is mainly manifested in the"sink"organs of NSCs.Our results provide insight into tree growth in the context of global climate change scenarios in subtropical forest ecosystems.展开更多
The floral organ morphology,pollen morphology,quantity,and viability of Rumex,Rumex hanus F1,Rumex hanus 1,and Rumex hanus 2 were compared and analyzed.The results showed that the longitudinal diameter of petals was n...The floral organ morphology,pollen morphology,quantity,and viability of Rumex,Rumex hanus F1,Rumex hanus 1,and Rumex hanus 2 were compared and analyzed.The results showed that the longitudinal diameter of petals was not significantly different among different varieties of sorrel,and the transverse diameter and corolla diameter showed differences to varying degrees.They all had six stamens and three stigmas.The pollen shape of the four varieties was prolate,and the polar view was trilobated and round.They all had three germinal furrows,and the outer wall of the pollen was decorated with small cavities and spiny patterns,with warty protrusions.The equatorial axis length of pollen of different varieties of sorrel was significantly different(P<0.05).There were no significant differences in pollen amount among different varieties.There were six anthers in a single flower,featuring anther dehiscence.The pollen viability of Rumex hanus 1 was significantly lower than that of the other three varieties(P<0.05).Therefore,through the analysis of the floral organs and morphological characteristics of anthers of sorrel,the varieties of sorrel can be effectively distinguished and identified.展开更多
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes...Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.展开更多
1.THE HYPOTHERMIC PERFUSION MACHINE(HMP).AP-PLICATIONS TO THE PRESERVATION AND/OR THE RES-CUE OF LIVERS FOR TRANSPLANT Rodriguez JV Centro Binacional(Arg.-Italia)de Investigaciones en Criobiología Clínica y ...1.THE HYPOTHERMIC PERFUSION MACHINE(HMP).AP-PLICATIONS TO THE PRESERVATION AND/OR THE RES-CUE OF LIVERS FOR TRANSPLANT Rodriguez JV Centro Binacional(Arg.-Italia)de Investigaciones en Criobiología Clínica y Aplicada(CAIC),UNR.E-mail:jrodrig@fbioyf.unr.edu.ar The developing demand of donor organs is responsible for an in-creasing utilization of marginal donor organs(MDO)provided by people suffering from non-beating heart.These organs have a grow-ing vulnerability to ischemia-reperfusion injury and compromised repair mechanisms.Indeed,MDO have been associated with in-creased rates of delayed graft function and acute rejection rates.HMP offers the possibility of recovering these organs.Principles of HMP are based on controlled perfusion of the organ at low tem-perature,via the vascular bed which delivers oxygen and nutrients from the perfusate,while waste metabolites are continuously re-moved.But there are several points to be investigated respect to the methodology involved in the HMP to determine the appropriate practice to perfuse and recover MDO.These points are:1-perfu-sion route(portal vein alone,portal vein and hepatic artery,hepatic artery alone,retrograde perfusion via hepatic vein;2-perfusion pressure and flow(constant flow or constant pressure?,continuous or intermittent flow,pulsatile or not?,flow at 25 or 50%of the normothermic flow?;3-perfusate oxygenation or not?,how much oxygen may be delivered during HMP?;4-perfusion temperature,20,10 or 5°C?;5-perfusate composition:the choice of the appro-priate colloid and the Na+and K+concentrations.Is the addition of cytoprotectors,free-radical scavengers and iron chelators relevant during HMP?;5-could it be beneficial to utilize pharmacological maneuvers as the addition of bioactive gases(CO,NO,or H2S)during HMP?展开更多
Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzhei...Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies.展开更多
Objective: To explore the effect of Cangfudaotan Tang on phlegm dampness type of PCOS and the role of oatp2b1 in transportation and transformation of phlegm dampness. Methods: 36 SD female rats were randomly divided i...Objective: To explore the effect of Cangfudaotan Tang on phlegm dampness type of PCOS and the role of oatp2b1 in transportation and transformation of phlegm dampness. Methods: 36 SD female rats were randomly divided into three groups: blank control group, model group and Cangfudaotan Tang group, 12 cases in each one. After PCOS rat models were made, rats of Cangfudaotan Tang group were treated with Cangfudaotan Tang (1.42 g/kg/d) by intragastric administration for 14 days;blank control and model group were given with isodose saline. The expression of oatp2b1 mRNA/Protein in liver and kidney tissues was measured and the level of testosterone (T), follicle stimulating hormone(FSH), estradiol (E<sub>2</sub>), luteinizing hormone(LH), Serum total cholesterol (TG), Triacylglycerols (TC), high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C) were detected at the same time. Results: Compared with blank control group, the expression of oatp2b1 mRNA and the level of TC, TG, LDL, LH, FSH, T in model group were significantly increased (P < 0. 05), while the level of HDL was significantly decreased (P < 0. 05);compared with model group, the expression of oatp2b1 mRNA and the level of TC, TG, LDL in Cangfudaotan Tang group were significantly lowered (P < 0.05);the level of HDL was significantly higher;the oatp2b1 protein in kidney and liver tissues had different degrees of expression, while there was no statistical significance among the three groups. Conclusions: Oatp2b1 might be one of the material bases participating in transportation and transformation of phlegmy dampness. The mechanism of Cangfudaotan Tang treating phlegm dampness type of PCOS may be achieved by regulating the expression of oatp2b1.展开更多
[Objective] The aim was to learn the resistance of different tissues and organs of transgenic cotton to Spodoptera exigua (Hbner). [Method] Flowers,the 1st,the 3rd,the 6th and the 14th leaves from the top of 33B,GK1...[Objective] The aim was to learn the resistance of different tissues and organs of transgenic cotton to Spodoptera exigua (Hbner). [Method] Flowers,the 1st,the 3rd,the 6th and the 14th leaves from the top of 33B,GK12 and SGK321 were used to feed S. exigua neonates respectively. Survival larvae and dead ones were counted on the 3rd,the 7th,the 10th,the 16th and the 19th day; meanwhile,the pupae amount was recorded,and the pupae weight was measured at the 24th h after pupation. [Result] The survival curves,pupation rates and pupae weights of S. exigua feeding on different tissues of transgenic cotton were not significantly different from those of S. exigua feeding on the corresponding tissues of conventional cotton; pupation rate of S. exigua feeding on different leaves of the same cotton variety were not significantly different from each other,but all higher than that of S. exigua feeding on the flowers of that cotton; and there were no differences among pupation weights of S. exigua feeding on different leaves or flowers of the same cotton variety. [Conclusion] Transgenic cotton showed weak resistance to S. exigua. Hence,in the transgenic cotton fields,more attention should be paid to occurrence trend of S. exigua and its control.展开更多
[Objective] This study was conducted to investigate the morphological and physiological differences between the flowers opening spring and late autumn of Hosui Asian pear(Pyrus pyrifolia Nakai). [Method] Pear flower...[Objective] This study was conducted to investigate the morphological and physiological differences between the flowers opening spring and late autumn of Hosui Asian pear(Pyrus pyrifolia Nakai). [Method] Pear flowers were collected from normal bloom(NB) and returning bloom periods during late autumn in 2011-2013,respectively. The morphological and physiological indices including pollen number,germination rate, petal length, soluble protein content, soluble sugar content, amino acid content, pollen tube growth, fruiting characteristics of NB and RB flowers were detected and compared. [Result] The filament length and petal area of RB flowers were significantly smaller than those of NB flowers. The contents of soluble proteins, soluble sugars and amino acids of RB pollens were significantly smaller than those of NB flowers. In addition, the abortion rate of RB flowers was higher than that of NB flowers. [Conclusion] RB flowers had complete floral organs and were capable of pollination, but they were different from NB flowers in some morphological and physiological indices.展开更多
The biomass, macroelements (N, P, K, Ca, Mg) and microelements (Fe, Zn) contents were detected in organs of 1a-3a Eucalyptus grandis saplings, as well as their accumulated amount. Results showed that contents of n...The biomass, macroelements (N, P, K, Ca, Mg) and microelements (Fe, Zn) contents were detected in organs of 1a-3a Eucalyptus grandis saplings, as well as their accumulated amount. Results showed that contents of nutrient elements varied greatly in different organs. Total contents of macroelements N, P, K, Ca and Mg in1a-3a E. grandis were distributed in the order of stem phloem, leaves 〉 branch- es, roots 〉 stem xylem. Accumulated amount of macroelements in 1a-3a E. grandis were in the order of leaves 〉 branches 〉 stem phloem 〉 roots or stem xylem 〉 stem xylem or roots. Accumulated amount law of nutrient elements was not affected by the plant age. Microelements Fe and Zn were mainly concentrated in the leaves and roots. The accumulation of macroelements was in the order of Ca 〉 N 〉 K 〉 Mg 〉 P; and the microelements was in the order of Fe 〉 Zn. Accumulated amounts of microelements in 1a-3a E. grandis were 12.45 136.19 and 420.23 g per plants, respectively. Among the annual net accumulated amount of nutrient ele- ments per plant in 1a-3a E. grandis, Ca element was the maximum, N and K ele- ments took the second and third places. Mg element was relatively small and P el- ement was the minimum.展开更多
It has been hypothesized that under iron stress high ferric chelate reductase (FCR) activity in the absorptive root of plants tolerant to iron_deficiency will be induced and result in subsequent Fe 2+ transport a...It has been hypothesized that under iron stress high ferric chelate reductase (FCR) activity in the absorptive root of plants tolerant to iron_deficiency will be induced and result in subsequent Fe 2+ transport across the plasmalemma. The activity of FCR and expression of FCR gene (FRO2) in Citrus junos Sieb. ex Tanaka tolerant to iron_deficiency and Poncirus trifoliata (L.) Raf. susceptible to iron_deficiency were determined to elucidate the physiological difference which causes the different tolerance of the two citrus rootstocks to iron stress. The activity of FCR was detectable in excised roots and was stimulated about 20_times in C. junos and only about 3_times in P. trifoliata under iron deficiency for four weeks. The FRO2 of Arabidopsis was used as a probe, the tissue print technique was used to ascertain the expression of the FCR gene in C. junos and P. trifoliata under iron stress. High_level transcripts were observed in the absorptive root, young green stem as well as new leaf of C. junos under iron stress for two weeks, and the transcripts were accumulated only slightly in P. trifoliata at the same time. The results showed that the obvious increase of FCR activity was an important reason for the tolerance of C. junos to iron_deficiency, and the regulation of FCR activity seemed to be at the transcriptional level, and the expression of FRO2 occurred in the root, stem and leaf.展开更多
文摘Recent regenerative medicine and tissue engineering strategies(using cells, scaffolds, medical devices and gene therapy) have led to fascinating progress of translation of basic research towards clinical applications. In the past decade, great deal of research has focused on developing various three dimensional(3D) organs, such as bone, skin, liver, kidney and ear,using such strategies in order to replace or regenerate damaged organs for the purpose of maintaining or restoring organs' functions that may have been lost due to aging, accident or disease. The surface properties of a material or a device are key aspects in determining the success of the implant in biomedicine, as the majority of biological reactions in human body occur on surfaces or interfaces. Furthermore, it has been established in the literature that cell adhesion and proliferation are, to a great extent, influenced by the micro- and nanosurface characteristics of biomaterials and devices. In addition, it has been shown that the functions of stem cells, mesenchymal stem cells in particular, could be regulated through physical interaction with specific nanotopographical cues. Therefore, guided stem cell proliferation, differentiation and function are of great importance in the regeneration of 3D tissues and organs using tissue engineering strategies. This review will provide an update on the impact of nanotopography on mesenchymal stem cells for the purpose of developing laboratory-based 3D organs and tissues, as well as the most recent research and case studies on this topic.
文摘Adequate vascularization is a critical determinant for the successful construction and clinical implementation of complex organotypic tissue models. Currently, low cell and vessel density and insufficient vascular maturation make vascularized organotypic tissue construction difficult,greatly limiting its use in tissue engineering and regenerative medicine. To address these limitations, recent studies have adopted pre-vascularized microtissue assembly for the rapid generation of functional tissue analogs with dense vascular networks and high cell density. In this article, we summarize the development of module assembly-based vascularized organotypic tissue construction and its application in tissue repair and regeneration, organ-scale tissue biomanufacturing, as well as advanced tissue modeling.
基金The authors would like to acknowledge support from the National Natural Science Foundation of China(51875518,51475419,and 81501607)the Natural Science Foundation of Zhejiang Province of China(LY15H160019)the Key Research and Development Projects of Zhejiang Province(2017C01054).
文摘Three-dimensional(3D)bioprinting is a rapidly growing technology that has been widely used in tissue engineering,disease studies,and drug screening.It provides the unprecedented capacity of depositing various types of biomaterials,cells,and biomolecules in a layer-by-layer fashion,with precisely controlled spatial distribution.This technology is expected to address the organ-shortage issue in the future.In this review,we first introduce three categories of 3D bioprinting strategies:inkjet-based printing(IBP),extrusion-based printing(EBP),and light-based printing(LBP).Biomaterials and cells,which are normally referred to as“bioinks,”are then discussed.We also systematically describe the recent advancements of 3D bioprinting in fabricating cell-laden artificial tissues and organs with solid or hollow structures,including cartilage,bone,skin,muscle,vascular network,and so on.The development of organs-onchips utilizing 3D bioprinting technology for drug discovery and toxicity testing is reviewed as well.Finally,the main challenges in current studies and an outlook of the future research of 3D bioprinting are discussed.
文摘Wound healing,tissue repair and regenerative medicine are in great demand,and great achievements in these fields have been made.The traditional strategy of tissue repair and regeneration has focused on the level of tissues and organs directly;however,the basic process of repair at the cell level is often neglected.Because the cell is the basic unit of organism structure and function;cell damage is caused first by ischemia or ischemia-reperfusion after severe trauma and injury.Then,damage to tissues and organs occurs with massive cell damage,apoptosis and even cell death.Thus,how to achieve the aim of perfect repair and regeneration?The basic process of tissue or organ repair and regeneration should involve repair of cells first,then tissues and organs.In this manuscript,it is my consideration about how to repair the cell first,then regenerate the tissues and organs.
基金Supported by the National Natural Sciences Foundation of China(30370443)
文摘Objective To provide basis of reference values for relevant parameters of Chinese Reference Man. Methods Eighteen kinds of major organ or tissue samples, including muscle, rib, liver, and so on, were obtained from 4 areas (Hebei, Shanxi, Jiangsu, and Sichuan provinces) with different dietary patterns in China in autopsy of 16 healthy adult men, who had just encountered sudden deaths. At the same time, whole blood samples were collected from 10 volunteers living in each of these areas. The concentrations of 56 elements in these samples were detected by using Inductively Coupled Plasma Mass Spectrometry (ICP-MS), Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES), and Graphite Furnace Atomic Absorption Spectrometry (GF-AAS) techniques. Based on obtained concentrations and reference values of these organ or tissue weights for Chinese Reference Man, the relative elemental burdens in these organs or tissues as well whole body were also estimated. Results The concentrations of 56 elements in 18 main organs or tissues were determined all together and their elemental organ or tissue and whole body burdens were estimated. Furthermore, the distributions of important elements for radiation protection in these organs or tissues were emphatically discussed. Conclusion By summing with past related results, the total results obtained from the series of research may provide more reliable and better representative basis of these reference values for Chinese Reference Man than before.
文摘Ovarian cancer mostly presents with extensive peritoneal cavity and extraperitoneal dissemination. Satisfactory and complete resection of the lesions is one of the key factors to improve the prognosis. The trend of surgical resection of extra-ovarian tissues and organs invaded by the tumor has become obvious in order to remove all primary loci and all metastases as much as possible to minimize residual tumor lesions. This article provides a literature review on organ resection in ovarian cancer cytoreduction, summarizing the perioperative complications and survival outcomes at the time of different organ surgery, with the aim of providing guidance for clinical work.
基金supported by grants from the National Key R&D Program of China(2020YFA0509500)the National Natural Science Foundation of China(U19A2036,31772576,31530073 and 31802044)+1 种基金the Sichuan Science and Technology Program(2021YFYZ0009 and 2021YFYZ0030)the International Cooperation Project of Science and Technology Department of Sichuan Province(2021YFH0033).
文摘Background:A growing body of evidence has revealed that the mammalian genome is organized into hierarchical layers that are closely correlated with and may even be causally linked with variations in gene expression.Recent studies have characterized chromatin organization in various porcine tissues and cell types and compared them among species and during the early development of pigs.However,how chromatin organization differs among pig breeds is poorly understood.Results:In this study,we investigated the 3D genome organization and performed transcriptome characterization of two adipose depots(upper layer of backfat[ULB]and greater omentum[GOM])in wild boars and Bama pigs;the latter is a typical indigenous pig in China.We found that over 95%of the A/B compartments and topologically associating domains(TADs)are stable between wild boars and Bama pigs.In contrast,more than 70%of promoterenhancer interactions(PEIs)are dynamic and widespread,involving over a thousand genes.Alterations in chromatin structure are associated with changes in the expression of genes that are involved in widespread biological functions such as basic cellular functions,endocrine function,energy metabolism and the immune response.Approximately 95%and 97%of the genes associated with reorganized A/B compartments and PEIs in the two pig breeds differed between GOM and ULB,respectively.Conclusions:We reported 3D genome organization in adipose depots from different pig breeds.In a comparison of Bama pigs and wild boar,large-scale compartments and TADs were mostly conserved,while fine-scale PEIs were extensively reorganized.The chromatin architecture in these two pig breeds was reorganized in an adipose depotspecific manner.These results contribute to determining the regulatory mechanism of phenotypic differences between Bama pigs and wild boar.
基金supported by the Key Projects of the National Natural Science Foundation of China,No.11932013(to XC)Key Military Logistics Research Projects,No.B WJ21J002(to XC)+4 种基金the Key projects of the Special Zone for National Defence Innovation,No.21-163-12-ZT006002-13(to XC)the National Nature Science Foundation of China No.82272255(to XC)the National Defense Science and Technology Outstanding Youth Science Fund Program,No.2021-JCIQ-ZQ-035(to XC)the Scientific Research Innovation Team Project of Armed Police Characteristic Medical Center,No.KYCXTD0104(to ZL)the National Natural Science Foundation of China Youth Fund,No.82004467(to BC)。
文摘Spinal cord injury is a serious disease of the central nervous system involving irreversible nerve injury and various organ system injuries.At present,no effective clinical treatment exists.As one of the artificial hibernation techniques,mild hypothermia has preliminarily confirmed its clinical effect on spinal cord injury.However,its technical defects and barriers,along with serious clinical side effects,restrict its clinical application for spinal cord injury.Artificial hibernation is a futureoriented disruptive technology for human life support.It involves endogenous hibernation inducers and hibernation-related central neuromodulation that activate particular neurons,reduce the central constant temperature setting point,disrupt the normal constant body temperature,make the body adapt"to the external cold environment,and reduce the physiological resistance to cold stimulation.Thus,studying the artificial hibernation mechanism may help develop new treatment strategies more suitable for clinical use than the cooling method of mild hypothermia technology.This review introduces artificial hibernation technologies,including mild hypothermia technology,hibernation inducers,and hibernation-related central neuromodulation technology.It summarizes the relevant research on hypothermia and hibernation for organ and nerve protection.These studies show that artificial hibernation technologies have therapeutic significance on nerve injury after spinal co rd injury through inflammatory inhibition,immunosuppression,oxidative defense,and possible central protection.It also promotes the repair and protection of res pirato ry and digestive,cardiovascular,locomoto r,urinary,and endocrine systems.This review provides new insights for the clinical treatment of nerve and multiple organ protection after spinal cord injury thanks to artificial hibernation.At present,artificial hibernation technology is not mature,and research fa ces various challenges.Neve rtheless,the effort is wo rthwhile for the future development of medicine.
基金supported by The National Key Research and Development Program of China(2022YFD1200704--3)Crop Varietal Improvement and Insect Pests Control by Nuclear Radiation,Platform for Mutation Breeding by Radiation of Sichuan(2021YFYZ0011)+1 种基金Natural Science Foundation of Sichuan Province(2022NSFSC1635)Applied Basic Research Programs of Sichuan Provincial Science and Technology Department(2020YJ0249)。
文摘Maize plant architecture influences planting density and,in turn,grain yield.Most of the plant architecture-related traits can be described as organ size.We describe a miniature maize mutant,Tiny plant 4(Tip4),which exhibits reduced size of multiple organs and exhibits a semi-dominant monofactorial inheritance characteristic.Positional cloning confirmed that a 4-bp deletion in the NAC TF with transmembrane motif 1-Like(NTL)gene ZmNTL2,denoted as ZmNTL2^(Δ),confers the Tip4 mutation.qRT-PCR showed that ZmNTL2 was expressed in all tested tissues.ZmNTL2 functions as a transcriptional activator and is located in both the nucleus and biomembranes.The mutation does not affect the mRNA abundance of ZmNTL2 locus,but it does result in the loss of transmembrane domain and confines the ZmNTL2^(Δ)protein to the nucleus.Knocking out ZmNTL2 has no effect on maize organ size development,indicating that the 4-bp deletion might be a gain-of-function mutation in organ size regulation.Combining transcriptome sequencing with cytokinin and auxin content determination suggests that the decreased organ size may be possibly mediated by changes in hormone homeostasis.
基金the National Natural Science Foundation of China(32260379&32371852)the Jiangxi Provincial Natural Science Foundation(20224ACB215005)
文摘Global climate change can affect tree growth and carbon sink function by influencing plant carbohydrate synthesis and utilization,while elevation can be used as an ideal setting under natural conditions to simulate climate change effects.The effect of elevation on tree growth may depend on organ type.However,the allocation patterns of nonstructural and structural carbohydrates(NSCs and SCs,respectively)in different tree organs and their response to elevation remain unclear.We selected four dominant tree species,Schima superba,Castanopsis eyrei,Castanopsis fargesii and Michelia maudiae,along an elevation gradient from 609 to 1,207 m in subtropical evergreen broad-leaved forests and analyzed leaf,trunk,and fine root NSCs,carbon(C),nitrogen(N)and phosphorus(P)concentrations and the relative abundance of SCs.Leaf NSCs increased initially and then decreased,and trunk NSCs increased with increasing elevation.However,root NSCs decreased with increasing elevation.The relative abundance of SCs in leaves and trunks decreased,while the relative abundance of root SCs increased with increasing elevation.No significant correlations between SCs and NSCs in leaves were detected,while there were negative correlations between SCs and NSCs in trunks,roots,and all organs.Hierarchical partitioning analysis indicated that plant C/N and C/P were the main predictors of changes in SCs and NSCs.Our results suggest that tree organs have divergent responses to elevation and that increasing elevation will inhibit the aboveground part growth and enhance the root growth of trees.A tradeoff between the C distribution used for growth and storage was confirmed along the elevation gradient,which is mainly manifested in the"sink"organs of NSCs.Our results provide insight into tree growth in the context of global climate change scenarios in subtropical forest ecosystems.
基金Supported by National Key Research and Development Plan Project of China(2023YFD1301200)。
文摘The floral organ morphology,pollen morphology,quantity,and viability of Rumex,Rumex hanus F1,Rumex hanus 1,and Rumex hanus 2 were compared and analyzed.The results showed that the longitudinal diameter of petals was not significantly different among different varieties of sorrel,and the transverse diameter and corolla diameter showed differences to varying degrees.They all had six stamens and three stigmas.The pollen shape of the four varieties was prolate,and the polar view was trilobated and round.They all had three germinal furrows,and the outer wall of the pollen was decorated with small cavities and spiny patterns,with warty protrusions.The equatorial axis length of pollen of different varieties of sorrel was significantly different(P<0.05).There were no significant differences in pollen amount among different varieties.There were six anthers in a single flower,featuring anther dehiscence.The pollen viability of Rumex hanus 1 was significantly lower than that of the other three varieties(P<0.05).Therefore,through the analysis of the floral organs and morphological characteristics of anthers of sorrel,the varieties of sorrel can be effectively distinguished and identified.
基金supported by grants from the Natural Science Foundation of Tianjin(General Program),Nos.23JCYBJC01390(to RL),22JCYBJC00220(to XC),and 22JCYBJC00210(to QL).
文摘Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities.Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites,neglecting multilevel pathological analysis of the overall nervous system and target organs.This has led to restrictions on current therapeutic approaches.In this paper,we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective,covering the central nervous system,peripheral nervous system,and target organs.After peripheral nerve injury,the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves;changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord.The nerve will undergo axonal regeneration,activation of Schwann cells,inflammatory response,and vascular system regeneration at the injury site.Corresponding damage to target organs can occur,including skeletal muscle atrophy and sensory receptor disruption.We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury.The main current treatments are conducted passively and include physical factor rehabilitation,pharmacological treatments,cell-based therapies,and physical exercise.However,most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway.Therefore,we should further explore multilevel treatment options that produce effective,long-lasting results,perhaps requiring a combination of passive(traditional)and active(novel)treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
文摘1.THE HYPOTHERMIC PERFUSION MACHINE(HMP).AP-PLICATIONS TO THE PRESERVATION AND/OR THE RES-CUE OF LIVERS FOR TRANSPLANT Rodriguez JV Centro Binacional(Arg.-Italia)de Investigaciones en Criobiología Clínica y Aplicada(CAIC),UNR.E-mail:jrodrig@fbioyf.unr.edu.ar The developing demand of donor organs is responsible for an in-creasing utilization of marginal donor organs(MDO)provided by people suffering from non-beating heart.These organs have a grow-ing vulnerability to ischemia-reperfusion injury and compromised repair mechanisms.Indeed,MDO have been associated with in-creased rates of delayed graft function and acute rejection rates.HMP offers the possibility of recovering these organs.Principles of HMP are based on controlled perfusion of the organ at low tem-perature,via the vascular bed which delivers oxygen and nutrients from the perfusate,while waste metabolites are continuously re-moved.But there are several points to be investigated respect to the methodology involved in the HMP to determine the appropriate practice to perfuse and recover MDO.These points are:1-perfu-sion route(portal vein alone,portal vein and hepatic artery,hepatic artery alone,retrograde perfusion via hepatic vein;2-perfusion pressure and flow(constant flow or constant pressure?,continuous or intermittent flow,pulsatile or not?,flow at 25 or 50%of the normothermic flow?;3-perfusate oxygenation or not?,how much oxygen may be delivered during HMP?;4-perfusion temperature,20,10 or 5°C?;5-perfusate composition:the choice of the appro-priate colloid and the Na+and K+concentrations.Is the addition of cytoprotectors,free-radical scavengers and iron chelators relevant during HMP?;5-could it be beneficial to utilize pharmacological maneuvers as the addition of bioactive gases(CO,NO,or H2S)during HMP?
基金financially supported by the National Natural Science Foundation of China,No.823 74552 (to WP)the Science and Technology Innovation Program of Hunan Province,No.2022RC1220 (to WP)+1 种基金the Natural Science Foundation of Hunan Province of China,Nos.2020JJ4803 (to WP),2022JJ40723 (to MY)the Scientific Research Launch Project for New Employees of the Second Xiangya Hospital of Central South University (to MY)
文摘Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies.
文摘Objective: To explore the effect of Cangfudaotan Tang on phlegm dampness type of PCOS and the role of oatp2b1 in transportation and transformation of phlegm dampness. Methods: 36 SD female rats were randomly divided into three groups: blank control group, model group and Cangfudaotan Tang group, 12 cases in each one. After PCOS rat models were made, rats of Cangfudaotan Tang group were treated with Cangfudaotan Tang (1.42 g/kg/d) by intragastric administration for 14 days;blank control and model group were given with isodose saline. The expression of oatp2b1 mRNA/Protein in liver and kidney tissues was measured and the level of testosterone (T), follicle stimulating hormone(FSH), estradiol (E<sub>2</sub>), luteinizing hormone(LH), Serum total cholesterol (TG), Triacylglycerols (TC), high density lipoprotein cholesterol (HDL-C) and low density lipoprotein cholesterol (LDL-C) were detected at the same time. Results: Compared with blank control group, the expression of oatp2b1 mRNA and the level of TC, TG, LDL, LH, FSH, T in model group were significantly increased (P < 0. 05), while the level of HDL was significantly decreased (P < 0. 05);compared with model group, the expression of oatp2b1 mRNA and the level of TC, TG, LDL in Cangfudaotan Tang group were significantly lowered (P < 0.05);the level of HDL was significantly higher;the oatp2b1 protein in kidney and liver tissues had different degrees of expression, while there was no statistical significance among the three groups. Conclusions: Oatp2b1 might be one of the material bases participating in transportation and transformation of phlegmy dampness. The mechanism of Cangfudaotan Tang treating phlegm dampness type of PCOS may be achieved by regulating the expression of oatp2b1.
基金Supported by National Transgenic Major Project ( Safe Monitoring Technique of Transgenic Organism 2008ZX08012-004)~~
文摘[Objective] The aim was to learn the resistance of different tissues and organs of transgenic cotton to Spodoptera exigua (Hbner). [Method] Flowers,the 1st,the 3rd,the 6th and the 14th leaves from the top of 33B,GK12 and SGK321 were used to feed S. exigua neonates respectively. Survival larvae and dead ones were counted on the 3rd,the 7th,the 10th,the 16th and the 19th day; meanwhile,the pupae amount was recorded,and the pupae weight was measured at the 24th h after pupation. [Result] The survival curves,pupation rates and pupae weights of S. exigua feeding on different tissues of transgenic cotton were not significantly different from those of S. exigua feeding on the corresponding tissues of conventional cotton; pupation rate of S. exigua feeding on different leaves of the same cotton variety were not significantly different from each other,but all higher than that of S. exigua feeding on the flowers of that cotton; and there were no differences among pupation weights of S. exigua feeding on different leaves or flowers of the same cotton variety. [Conclusion] Transgenic cotton showed weak resistance to S. exigua. Hence,in the transgenic cotton fields,more attention should be paid to occurrence trend of S. exigua and its control.
基金Supported by Sichuan Provincial Program on Basic Research Project(15JC0096)~~
文摘[Objective] This study was conducted to investigate the morphological and physiological differences between the flowers opening spring and late autumn of Hosui Asian pear(Pyrus pyrifolia Nakai). [Method] Pear flowers were collected from normal bloom(NB) and returning bloom periods during late autumn in 2011-2013,respectively. The morphological and physiological indices including pollen number,germination rate, petal length, soluble protein content, soluble sugar content, amino acid content, pollen tube growth, fruiting characteristics of NB and RB flowers were detected and compared. [Result] The filament length and petal area of RB flowers were significantly smaller than those of NB flowers. The contents of soluble proteins, soluble sugars and amino acids of RB pollens were significantly smaller than those of NB flowers. In addition, the abortion rate of RB flowers was higher than that of NB flowers. [Conclusion] RB flowers had complete floral organs and were capable of pollination, but they were different from NB flowers in some morphological and physiological indices.
基金Supported by the Key Laboratory of Forest Ecology and Resource Environment of Sichuan Province~~
文摘The biomass, macroelements (N, P, K, Ca, Mg) and microelements (Fe, Zn) contents were detected in organs of 1a-3a Eucalyptus grandis saplings, as well as their accumulated amount. Results showed that contents of nutrient elements varied greatly in different organs. Total contents of macroelements N, P, K, Ca and Mg in1a-3a E. grandis were distributed in the order of stem phloem, leaves 〉 branch- es, roots 〉 stem xylem. Accumulated amount of macroelements in 1a-3a E. grandis were in the order of leaves 〉 branches 〉 stem phloem 〉 roots or stem xylem 〉 stem xylem or roots. Accumulated amount law of nutrient elements was not affected by the plant age. Microelements Fe and Zn were mainly concentrated in the leaves and roots. The accumulation of macroelements was in the order of Ca 〉 N 〉 K 〉 Mg 〉 P; and the microelements was in the order of Fe 〉 Zn. Accumulated amounts of microelements in 1a-3a E. grandis were 12.45 136.19 and 420.23 g per plants, respectively. Among the annual net accumulated amount of nutrient ele- ments per plant in 1a-3a E. grandis, Ca element was the maximum, N and K ele- ments took the second and third places. Mg element was relatively small and P el- ement was the minimum.
文摘It has been hypothesized that under iron stress high ferric chelate reductase (FCR) activity in the absorptive root of plants tolerant to iron_deficiency will be induced and result in subsequent Fe 2+ transport across the plasmalemma. The activity of FCR and expression of FCR gene (FRO2) in Citrus junos Sieb. ex Tanaka tolerant to iron_deficiency and Poncirus trifoliata (L.) Raf. susceptible to iron_deficiency were determined to elucidate the physiological difference which causes the different tolerance of the two citrus rootstocks to iron stress. The activity of FCR was detectable in excised roots and was stimulated about 20_times in C. junos and only about 3_times in P. trifoliata under iron deficiency for four weeks. The FRO2 of Arabidopsis was used as a probe, the tissue print technique was used to ascertain the expression of the FCR gene in C. junos and P. trifoliata under iron stress. High_level transcripts were observed in the absorptive root, young green stem as well as new leaf of C. junos under iron stress for two weeks, and the transcripts were accumulated only slightly in P. trifoliata at the same time. The results showed that the obvious increase of FCR activity was an important reason for the tolerance of C. junos to iron_deficiency, and the regulation of FCR activity seemed to be at the transcriptional level, and the expression of FRO2 occurred in the root, stem and leaf.