Accurate prediction of tropical cyclone(TC)intensity is challenging due to the complex physical processes involved.Here,we introduce a new TC intensity prediction scheme for the western North Pacific(WNP)based on a ti...Accurate prediction of tropical cyclone(TC)intensity is challenging due to the complex physical processes involved.Here,we introduce a new TC intensity prediction scheme for the western North Pacific(WNP)based on a time-dependent theory of TC intensification,termed the energetically based dynamical system(EBDS)model,together with the use of a long short-term memory(LSTM)neural network.In time-dependent theory,TC intensity change is controlled by both the internal dynamics of the TC system and various environmental factors,expressed as environmental dynamical efficiency.The LSTM neural network is used to predict the environmental dynamical efficiency in the EBDS model trained using besttrack TC data and global reanalysis data during 1982–2017.The transfer learning and ensemble methods are used to retrain the scheme using the environmental factors predicted by the Global Forecast System(GFS)of the National Centers for Environmental Prediction during 2017–21.The predicted environmental dynamical efficiency is finally iterated into the EBDS equations to predict TC intensity.The new scheme is evaluated for TC intensity prediction using both reanalysis data and the GFS prediction data.The intensity prediction by the new scheme shows better skill than the official prediction from the China Meteorological Administration(CMA)and those by other state-of-art statistical and dynamical forecast systems,except for the 72-h forecast.Particularly at the longer lead times of 96 h and 120 h,the new scheme has smaller forecast errors,with a more than 30%improvement over the official forecasts.展开更多
Based on the Regional Specialized Meteorological Center(RSMC)Tokyo-Typhoon Center best-track data and the NCEP-NCAR reanalysis dataset,extratropical transitioning(ET)tropical cyclones(ETCs)over the western North Pacif...Based on the Regional Specialized Meteorological Center(RSMC)Tokyo-Typhoon Center best-track data and the NCEP-NCAR reanalysis dataset,extratropical transitioning(ET)tropical cyclones(ETCs)over the western North Pacific(WNP)during 1951–2021 are classified into six clusters using the fuzzy c-means clustering method(FCM)according to their track patterns.The characteristics of the six hard-clustered ETCs with the highest membership coefficient are shown.Most tropical cyclones(TCs)that were assigned to clusters C2,C5,and C6 made landfall over eastern Asian countries,which severely threatened these regions.Among landfalling TCs,93.2%completed their ET after landfall,whereas 39.8%of ETCs completed their transition within one day.The frequency of ETCs over the WNP has decreased in the past four decades,wherein cluster C5 demonstrated a significant decrease on both interannual and interdecadal timescales with the expansion and intensification of the western Pacific subtropical high(WPSH).This large-scale circulation pattern is favorable for C2 and causes it to become the dominant track pattern,owning to it containing the largest number of intensifying ETCs among the six clusters,a number that has increased insignificantly over the past four decades.The surface roughness variation and three-dimensional background circulation led to C5 containing the maximum number of landfalling TCs and a minimum number of intensifying ETCs.Our results will facilitate a better understanding of the spatiotemporal distributions of ET events and associated environment background fields,which will benefit the effective monitoring of these events over the WNP.展开更多
There is limited understanding regarding the formation of multiple tropical cyclones(MTCs).This study explores the environmental conditions conducive to MTC formation by objectively determining the atmospheric circula...There is limited understanding regarding the formation of multiple tropical cyclones(MTCs).This study explores the environmental conditions conducive to MTC formation by objectively determining the atmospheric circulation patterns favorable for MTC formation over the western North Pacific.Based on 199 MTC events occurring from June to October 1980–2020,four distinct circulation patterns are identified:the monsoon trough(MT)pattern,accounting for 40.3%of occurrences,the confluence zone(CON)pattern at 26.2%,the easterly wave(EW)pattern at 17.8%,and the monsoon gyre(MG)pattern at 15.7%.The MT pattern mainly arises from the interaction between the subtropical high and the monsoon trough,with MTCs forming along the monsoon trough and its flanks.The CON pattern is affected by the subtropical high,the South Asian high,and the monsoon trough,with MTCs emerging at the confluence zone where the prevailing southwesterly and southeasterly flows converge.The EW pattern is dominated by easterly flows,with MTCs developing along the easterly wave train.MTCs in the MG pattern arise within a monsoon vortex characterized by strong southwesterly flows.A quantitative analysis further indicates that MTC formation in the MT pattern is primarily governed by mid-level vertical velocity and low-level vorticity,while mid-level humidity and vertical velocity are significantly important in the other patterns.The meridional shear and convergence of zonal winds are essential in converting barotropic energy from the basic flows to disturbance kinetic energy,acting as the primary source for eddy kinetic energy growth.展开更多
Combining some information from field investigation of algae along the coastal areas in China and a few pictures materialized from the western Yellow Sea in 2008,authors analyze the necessary conditions and possible w...Combining some information from field investigation of algae along the coastal areas in China and a few pictures materialized from the western Yellow Sea in 2008,authors analyze the necessary conditions and possible water area in China producing a large biomass,some reasons for firestorm,and the possibility of the reappearance of marine bloom green alga Enteromorpha prolifera.The change of habitats and the increase of nutritional levels related to the water area could be considered as direct reasons.It was transferred northward by the combination of the flow of rainwater,wind and alongshore marine current.The original region of large biomass produced is possibly located in the southwestern Yellow sea.It will possibly be appearing again in the coming years or in the future.A summary is also given referring to its reproduction,development and distribution worldwide.展开更多
Chemistry of major and minor elements,87Sr/86Sr,δD,δ18O and δ34S of brines were measured from Tertiary strata and Quaternary salt lakes in the western Qaidam Basin.The water chemistry data show that all oilfield br...Chemistry of major and minor elements,87Sr/86Sr,δD,δ18O and δ34S of brines were measured from Tertiary strata and Quaternary salt lakes in the western Qaidam Basin.The water chemistry data show that all oilfield brines are CaCl2 type.They were enriched in Ca2+,B3+,Li+,Sr2+,Br-,and were depleted in Mg2+,SO42-,which indicated that these brines had the characteristics of deeply circulated water.The relationship between δD and δ18O shows that all data of these brines decline towards the Global Meteoric Water Line(GWL) and Qaidam Meteoric Water Line(QWL),and that the intersection between oilfield brines and Meteoric Water Lines was close to the local spring and fresh water in the piedmont in the western Qaidam Basin.The results suggest that oilfield brines has initially originated from meteoric water,and then might be affected by water-rock metamorphose,because most oilfield brines distribute in the range of metamorphosing water.The 87Sr/86Sr values of most oilfield brines range from 0.71121 to 0.71194,and was less than that in salt lake water(>0.712),but close to that of halite in the study area.These imply that salt dissolution occurred in the process of migration.In addition,all oilfield brines have obviously much positive δ34S values(ranging from 26.46‰ to 54.57‰) than that of salt lake brines,which was caused by bacterial sulfate reduction resulting in positive shift of δ34S value and depleteed SO42-in oilfield brines.Combined with water chemical data and δD,δ18O,87Sr/86Sr,δ34S values,we concluded that oilfield brines mainly originate from the deeply circulated meteoric waters,and then are affected by salt dissolution,water-rock metamorphose,sulfate reduction and dolomitization during the process of migration.These processes alter the chemical compositions of oilfield brines and accumulate rich elements(such as B,Li,Sr,Br,K and so on) for sustainable utilization of salt lake resources in the Qaidam Basin.展开更多
Objective:To identify and compare the existence of similar and other risk factors in the perspective of an Indian population.Methods:It was designed as a case control study and was conducted in the Department of Gener...Objective:To identify and compare the existence of similar and other risk factors in the perspective of an Indian population.Methods:It was designed as a case control study and was conducted in the Department of General and Vascular Surgery Unit 2 of Christian Medical College,Vellore,India between the periods July 2003 to June 2005.100 patients with an ABPI【 0.9 and 100 controls were studied.Results:Peripheral arterial disease(PAD) was found to be commoner among males(87%).While atherosclerosis was the commonest aetiology(54%),the incidence of Thromboangiitis Obliterans was also not uncommon(38%).Smoking was the main risk factor in the Indian context(83%) as compared to hypercholesterolemia(60%) in the West. The patients with atherosclerotic PAD were middle-aged and had concomitant diabetes(50%) and hypertension(30%).Conclusions:Peripheral arterial disease occurs in a relatively younger age group in India as compared to their Western counterparts.Thromboangiitis Obliterans was found to be a significant aetiology for arterial occlusive disease,with smoking as the primary risk factor followed by diabetes,hypertension and hypercholesterolemia.展开更多
A scientific exploration well(CK1) was drilled to expand the oil/gas production in the western Sichuan depression, SW, China. Seventy-three core samples and four natural gas samples from the Middle–Late Triassic stra...A scientific exploration well(CK1) was drilled to expand the oil/gas production in the western Sichuan depression, SW, China. Seventy-three core samples and four natural gas samples from the Middle–Late Triassic strata were analyzed to determine the paleo-depositional setting and the abundance of organic matter(OM) and to evaluate the hydrocarbon-generation process and potential. This information was then used to identify the origin of the natural gas. The OM is characterized by medium n-alkanes(n C15–n C19), low pristane/phytane and terrigenous aquatic ratios(TAR), a carbon preference index(CPI) of ~1, regular steranes with C29 > C27 > C28, gammacerane/C30 hopane ratios of 0.15–0.32, and δDorg of-132‰ to-58‰, suggesting a marine algal/phytoplankton source with terrestrial input deposited in a reducing–transitional saline/marine sedimentary environment. Based on the TOC, HI index, and chloroform bitumen "A" the algalrich dolomites of the Leikoupo Formation are fair–good source rocks;the grey limestones of the Maantang Formation are fair source rocks;and the shales of the Xiaotangzi Formation are moderately good source rocks. In addition, maceral and carbon isotopes indicate that the kerogen of the Leikoupo and Maantang formations is type Ⅱ and that of the Xiaotangzi Formation is type Ⅱ–Ⅲ. The maturity parameters and the hopane and sterane isomerization suggest that the OM was advanced mature and produced wet–dry gases. One-dimensional modeling of the thermal-burial history suggests that hydrocarbon-generation occurred at 220–60 Ma. The gas components and C–H–He–Ar–Ne isotopes indicate that the oilassociated gases were generated in the Leikoupo and Maantang formations, and then, they mixed with gases from the Xiaotangzi Formation, which were probably contributed by the underlying Permian marine source rocks. Therefore, the deeply-buried Middle–Late Triassic marine source rocks in the western Sichuan depression and in similar basins have a great significant hydrocarbon potential.展开更多
The ophiolites that crop out discontinuously along the;000 km Yarlung Zangbo Suture zone(YZSZ)between the Nanga Parbat and Namche Barwa syntaxes in southern Tibet represent the remnants of Neotethyan oceanic lithosp...The ophiolites that crop out discontinuously along the;000 km Yarlung Zangbo Suture zone(YZSZ)between the Nanga Parbat and Namche Barwa syntaxes in southern Tibet represent the remnants of Neotethyan oceanic lithosphere(Fig.1a).We have investigated the internal structure and the geochemical makeup of mafic-ultramafic rock assemblages that are exposed in the westernmost segment of the YZSZ where the suture zone architecture displays two distinct sub-belts of ophiolitic and mélange units separated by a continental Zhongba terrane(Fig.1b).These two sub-belts include the Daba–Xiugugabu in the south(Southern sub-belt,SSB)and the Dajiweng–Saga in the north(Northern sub-belt,NSB).We present new structural,geochemical,geochronological data from upper mantle peridotites and mafic dike intrusions occurring in these two sub-belts and discuss their tectonomagmatic origin.In-situ analysis of zircon grains obtained from mafic dikes within the Baer,Cuobuzha and Jianabeng massifs in the NSB,and within the Dongbo,Purang,Xiugugabu,Zhaga and Zhongba in the SSB have yielded crystallization ages ranging between130 and 122 Ma.Dike rocks in both sub-belts show N-MORB REE patterns and negative Nb,Ta and Ti anomalies,reminiscent of those documented from SSZ ophiolites.*Harzburgitic host rocks of the mafic dike intrusionsmainly display geochemical compositions of abyssal peridotites(Fig.2),with the exception of the Dajiweng harzburgites,which show the geochemical signatures of forearc peridotites(Lian et al.,2016).Extrusive rocks that are spatially associated with these peridotite massifs in both sub-belts also have varying compositional and geochemical features.Tithonian to Valanginian(150–135 Ma)basaltic rocks in the Dongbo massif have OIB-like geochemistry and 138 Ma basaltic lavas in the Purang massif have EMORB-like geochemistry(Liu et al.,2015).Tuffaceous rocks in the Dajiweng massif are140 Ma in age and show OIB-like geochemistry.We interpret these age and geochemical data to reflect a rifted continental margin origin of the extrusive rock units in both sub-belts.These data and structural observations show that the western Yarluang Zangbo ophiolites represent fragments of an Ocean-Continent Transition(OCT)peridotites altered by fluids in an initial supersubduction setting.We infer that mafic-ultramafic rock assemblages exposed in the SSB and NSB initially formed in an ocean–continent transition zone(OCTZ)during the late Jurassic,and that they were subsequently emplaced in the forearc setting of an intraoceanic subduction zone within a Neotethyan seaway during 130 to 122 Ma.The NSB and SSB are hence part of a single,S-directed nappe sheet derived from a Neotethyan seaway located north of the Zhongba terrane.展开更多
Original ecotourism resources mainly refer to natural and human original ecotourism resources, and it's of fragility, rarity and irreversibility. As a valuable historic heritage and hnportant tourism resources, it pl...Original ecotourism resources mainly refer to natural and human original ecotourism resources, and it's of fragility, rarity and irreversibility. As a valuable historic heritage and hnportant tourism resources, it plays a significant role in developing tourism and economy in such areas as the underdeveloped areas, the mountain areas and mimority areas. The tourism resources in the western mountain areas of Guangxi owe ,superiorities and characteristics 'o their original ecology, Yet, western Guangxi is an ethnic region with fragile karst eco-environment, so it is specialto exploit the tourism resources. The paper defines original eeotourism and analyses the specialties and advantages of the original ecotourism resources as well as thefrailty of the ecotourism resources of the region. The ways of thinking are put forward for safe preservation and sustainable development of the original ecotourism resources, i.e. carrying out measures for the multi-grade protection of heritage resources, setting up a ethnic eco-museum/ ethnic culture eco-park and a gene pool of ethnic cultures, etc.展开更多
This study reveals the strengthened interdecadal relationship between the western North Pacific summer monsoon(WNPSM)and tropical central-western Pacific sea surface temperature anomaly(SSTA)in summer after the early ...This study reveals the strengthened interdecadal relationship between the western North Pacific summer monsoon(WNPSM)and tropical central-western Pacific sea surface temperature anomaly(SSTA)in summer after the early 1990s.In the first period(1979–91,P1),the WNPSM-related precipitation anomaly and horizontal wind anomaly present themselves as an analogous Pacific-Japan(PJ)-like pattern,generally considered to be related to the Niño-3 index in the preceding winter.During the subsequent period(1994–2019,P2),the WNPSM-related precipitation anomaly presents a zonal dipole pattern,correlated significantly with the concurrent SSTA in the Niño-4 and tropical western Pacific regions.The negative(positive)SSTA in the tropical western Pacific and positive(negative)SSTA in the Niño-4 region,could work together to influence the WNPSM,noting that the two types of anomalous SSTA configurations enhance(weaken)the WNPSM by the positive(negative)phase PJ-like wave and Gill response,respectively,with an anomalous cyclone(anticyclone)located in the WNPSM,which shows obvious symmetry about the anomalous circulation.Specifically,the SSTA in Niño-4 impacts the WNPSM by an atmospheric Gill response,with a stronger(weaker)WNPSM along with a positive(negative)SSTA in the Niño-4 region.Furthermore,the SSTA in the tropical western Pacific exerts an influence on the WNPSM by a PJ-like wave,with a stronger(weaker)WNPSM along with a negative(positive)SSTA in the tropical western Pacific.In general,SSTAs in the tropical western Pacific and Niño-4 areas could work together to exert influence on the WNPSM,with the effect most likely to occur in the El Niño(La Niña)developing year in P2.However,the SSTAs in the tropical western Pacific worked alone to exert an influence on the WNPSM mainly in 2013,2014,2016,and 2017,and the SSTAs in the Niño-4 region worked alone to exert an influence on the WNPSM mainly in Central Pacific(CP)La Niña developing years.The sensitivity experiments also can reproduce the PJ-like wave/Gill response associated with SSTA in the tropical western Pacific/Niño-4 regions.Therefore,the respective and synergistic impacts from the Niño-4 region and the tropical western Pacific on the WNPSM have been revealed,which helps us to acquire a better understanding of the interdecadal variations of the WNPSM and its associated climate influences.展开更多
基金supported by the National Key R&D Program of China(Grant No.2017YFC1501604)the National Natural Science Foundation of China(Grant Nos.41875114 and 41875057).
文摘Accurate prediction of tropical cyclone(TC)intensity is challenging due to the complex physical processes involved.Here,we introduce a new TC intensity prediction scheme for the western North Pacific(WNP)based on a time-dependent theory of TC intensification,termed the energetically based dynamical system(EBDS)model,together with the use of a long short-term memory(LSTM)neural network.In time-dependent theory,TC intensity change is controlled by both the internal dynamics of the TC system and various environmental factors,expressed as environmental dynamical efficiency.The LSTM neural network is used to predict the environmental dynamical efficiency in the EBDS model trained using besttrack TC data and global reanalysis data during 1982–2017.The transfer learning and ensemble methods are used to retrain the scheme using the environmental factors predicted by the Global Forecast System(GFS)of the National Centers for Environmental Prediction during 2017–21.The predicted environmental dynamical efficiency is finally iterated into the EBDS equations to predict TC intensity.The new scheme is evaluated for TC intensity prediction using both reanalysis data and the GFS prediction data.The intensity prediction by the new scheme shows better skill than the official prediction from the China Meteorological Administration(CMA)and those by other state-of-art statistical and dynamical forecast systems,except for the 72-h forecast.Particularly at the longer lead times of 96 h and 120 h,the new scheme has smaller forecast errors,with a more than 30%improvement over the official forecasts.
基金supported by the National Natural Science Foundation of China(Grant Nos.42075053 and 41975128)。
文摘Based on the Regional Specialized Meteorological Center(RSMC)Tokyo-Typhoon Center best-track data and the NCEP-NCAR reanalysis dataset,extratropical transitioning(ET)tropical cyclones(ETCs)over the western North Pacific(WNP)during 1951–2021 are classified into six clusters using the fuzzy c-means clustering method(FCM)according to their track patterns.The characteristics of the six hard-clustered ETCs with the highest membership coefficient are shown.Most tropical cyclones(TCs)that were assigned to clusters C2,C5,and C6 made landfall over eastern Asian countries,which severely threatened these regions.Among landfalling TCs,93.2%completed their ET after landfall,whereas 39.8%of ETCs completed their transition within one day.The frequency of ETCs over the WNP has decreased in the past four decades,wherein cluster C5 demonstrated a significant decrease on both interannual and interdecadal timescales with the expansion and intensification of the western Pacific subtropical high(WPSH).This large-scale circulation pattern is favorable for C2 and causes it to become the dominant track pattern,owning to it containing the largest number of intensifying ETCs among the six clusters,a number that has increased insignificantly over the past four decades.The surface roughness variation and three-dimensional background circulation led to C5 containing the maximum number of landfalling TCs and a minimum number of intensifying ETCs.Our results will facilitate a better understanding of the spatiotemporal distributions of ET events and associated environment background fields,which will benefit the effective monitoring of these events over the WNP.
基金supported by the National Natural Science Foundation of China(Grant No.42075015)the Science and Technology Commission of Shanghai Municipality,China(23DZ1204703).
文摘There is limited understanding regarding the formation of multiple tropical cyclones(MTCs).This study explores the environmental conditions conducive to MTC formation by objectively determining the atmospheric circulation patterns favorable for MTC formation over the western North Pacific.Based on 199 MTC events occurring from June to October 1980–2020,four distinct circulation patterns are identified:the monsoon trough(MT)pattern,accounting for 40.3%of occurrences,the confluence zone(CON)pattern at 26.2%,the easterly wave(EW)pattern at 17.8%,and the monsoon gyre(MG)pattern at 15.7%.The MT pattern mainly arises from the interaction between the subtropical high and the monsoon trough,with MTCs forming along the monsoon trough and its flanks.The CON pattern is affected by the subtropical high,the South Asian high,and the monsoon trough,with MTCs emerging at the confluence zone where the prevailing southwesterly and southeasterly flows converge.The EW pattern is dominated by easterly flows,with MTCs developing along the easterly wave train.MTCs in the MG pattern arise within a monsoon vortex characterized by strong southwesterly flows.A quantitative analysis further indicates that MTC formation in the MT pattern is primarily governed by mid-level vertical velocity and low-level vorticity,while mid-level humidity and vertical velocity are significantly important in the other patterns.The meridional shear and convergence of zonal winds are essential in converting barotropic energy from the basic flows to disturbance kinetic energy,acting as the primary source for eddy kinetic energy growth.
基金Supported by general and major projects of National Natural Science Foundation of China (Nos 40876081,30570125,and 30499340(partly)the National High Technology Research and Development Program of China (863 Program)(No 2008BAC49B01)Knowledge Innovation Project of Chinese Academy of Sciences (No KSCX2-YW-Z-018)
文摘Combining some information from field investigation of algae along the coastal areas in China and a few pictures materialized from the western Yellow Sea in 2008,authors analyze the necessary conditions and possible water area in China producing a large biomass,some reasons for firestorm,and the possibility of the reappearance of marine bloom green alga Enteromorpha prolifera.The change of habitats and the increase of nutritional levels related to the water area could be considered as direct reasons.It was transferred northward by the combination of the flow of rainwater,wind and alongshore marine current.The original region of large biomass produced is possibly located in the southwestern Yellow sea.It will possibly be appearing again in the coming years or in the future.A summary is also given referring to its reproduction,development and distribution worldwide.
基金supported by CAS Major Basic Preliminary Program (2004CCA03500)the National Natural Science Foundation of China (No. 40603007)
文摘Chemistry of major and minor elements,87Sr/86Sr,δD,δ18O and δ34S of brines were measured from Tertiary strata and Quaternary salt lakes in the western Qaidam Basin.The water chemistry data show that all oilfield brines are CaCl2 type.They were enriched in Ca2+,B3+,Li+,Sr2+,Br-,and were depleted in Mg2+,SO42-,which indicated that these brines had the characteristics of deeply circulated water.The relationship between δD and δ18O shows that all data of these brines decline towards the Global Meteoric Water Line(GWL) and Qaidam Meteoric Water Line(QWL),and that the intersection between oilfield brines and Meteoric Water Lines was close to the local spring and fresh water in the piedmont in the western Qaidam Basin.The results suggest that oilfield brines has initially originated from meteoric water,and then might be affected by water-rock metamorphose,because most oilfield brines distribute in the range of metamorphosing water.The 87Sr/86Sr values of most oilfield brines range from 0.71121 to 0.71194,and was less than that in salt lake water(>0.712),but close to that of halite in the study area.These imply that salt dissolution occurred in the process of migration.In addition,all oilfield brines have obviously much positive δ34S values(ranging from 26.46‰ to 54.57‰) than that of salt lake brines,which was caused by bacterial sulfate reduction resulting in positive shift of δ34S value and depleteed SO42-in oilfield brines.Combined with water chemical data and δD,δ18O,87Sr/86Sr,δ34S values,we concluded that oilfield brines mainly originate from the deeply circulated meteoric waters,and then are affected by salt dissolution,water-rock metamorphose,sulfate reduction and dolomitization during the process of migration.These processes alter the chemical compositions of oilfield brines and accumulate rich elements(such as B,Li,Sr,Br,K and so on) for sustainable utilization of salt lake resources in the Qaidam Basin.
文摘Objective:To identify and compare the existence of similar and other risk factors in the perspective of an Indian population.Methods:It was designed as a case control study and was conducted in the Department of General and Vascular Surgery Unit 2 of Christian Medical College,Vellore,India between the periods July 2003 to June 2005.100 patients with an ABPI【 0.9 and 100 controls were studied.Results:Peripheral arterial disease(PAD) was found to be commoner among males(87%).While atherosclerosis was the commonest aetiology(54%),the incidence of Thromboangiitis Obliterans was also not uncommon(38%).Smoking was the main risk factor in the Indian context(83%) as compared to hypercholesterolemia(60%) in the West. The patients with atherosclerotic PAD were middle-aged and had concomitant diabetes(50%) and hypertension(30%).Conclusions:Peripheral arterial disease occurs in a relatively younger age group in India as compared to their Western counterparts.Thromboangiitis Obliterans was found to be a significant aetiology for arterial occlusive disease,with smoking as the primary risk factor followed by diabetes,hypertension and hypercholesterolemia.
基金the Special Key Discipline-Geological Resources and Geological Engineering Scholarship(No.11000-13Z00703)of Chengdu University of Technology(CDUT)Oil and Gas Plays Accumulation and Enrichment Mechanisms in the Sichuan Basin Research Program for funding this research.
文摘A scientific exploration well(CK1) was drilled to expand the oil/gas production in the western Sichuan depression, SW, China. Seventy-three core samples and four natural gas samples from the Middle–Late Triassic strata were analyzed to determine the paleo-depositional setting and the abundance of organic matter(OM) and to evaluate the hydrocarbon-generation process and potential. This information was then used to identify the origin of the natural gas. The OM is characterized by medium n-alkanes(n C15–n C19), low pristane/phytane and terrigenous aquatic ratios(TAR), a carbon preference index(CPI) of ~1, regular steranes with C29 > C27 > C28, gammacerane/C30 hopane ratios of 0.15–0.32, and δDorg of-132‰ to-58‰, suggesting a marine algal/phytoplankton source with terrestrial input deposited in a reducing–transitional saline/marine sedimentary environment. Based on the TOC, HI index, and chloroform bitumen "A" the algalrich dolomites of the Leikoupo Formation are fair–good source rocks;the grey limestones of the Maantang Formation are fair source rocks;and the shales of the Xiaotangzi Formation are moderately good source rocks. In addition, maceral and carbon isotopes indicate that the kerogen of the Leikoupo and Maantang formations is type Ⅱ and that of the Xiaotangzi Formation is type Ⅱ–Ⅲ. The maturity parameters and the hopane and sterane isomerization suggest that the OM was advanced mature and produced wet–dry gases. One-dimensional modeling of the thermal-burial history suggests that hydrocarbon-generation occurred at 220–60 Ma. The gas components and C–H–He–Ar–Ne isotopes indicate that the oilassociated gases were generated in the Leikoupo and Maantang formations, and then, they mixed with gases from the Xiaotangzi Formation, which were probably contributed by the underlying Permian marine source rocks. Therefore, the deeply-buried Middle–Late Triassic marine source rocks in the western Sichuan depression and in similar basins have a great significant hydrocarbon potential.
文摘The ophiolites that crop out discontinuously along the;000 km Yarlung Zangbo Suture zone(YZSZ)between the Nanga Parbat and Namche Barwa syntaxes in southern Tibet represent the remnants of Neotethyan oceanic lithosphere(Fig.1a).We have investigated the internal structure and the geochemical makeup of mafic-ultramafic rock assemblages that are exposed in the westernmost segment of the YZSZ where the suture zone architecture displays two distinct sub-belts of ophiolitic and mélange units separated by a continental Zhongba terrane(Fig.1b).These two sub-belts include the Daba–Xiugugabu in the south(Southern sub-belt,SSB)and the Dajiweng–Saga in the north(Northern sub-belt,NSB).We present new structural,geochemical,geochronological data from upper mantle peridotites and mafic dike intrusions occurring in these two sub-belts and discuss their tectonomagmatic origin.In-situ analysis of zircon grains obtained from mafic dikes within the Baer,Cuobuzha and Jianabeng massifs in the NSB,and within the Dongbo,Purang,Xiugugabu,Zhaga and Zhongba in the SSB have yielded crystallization ages ranging between130 and 122 Ma.Dike rocks in both sub-belts show N-MORB REE patterns and negative Nb,Ta and Ti anomalies,reminiscent of those documented from SSZ ophiolites.*Harzburgitic host rocks of the mafic dike intrusionsmainly display geochemical compositions of abyssal peridotites(Fig.2),with the exception of the Dajiweng harzburgites,which show the geochemical signatures of forearc peridotites(Lian et al.,2016).Extrusive rocks that are spatially associated with these peridotite massifs in both sub-belts also have varying compositional and geochemical features.Tithonian to Valanginian(150–135 Ma)basaltic rocks in the Dongbo massif have OIB-like geochemistry and 138 Ma basaltic lavas in the Purang massif have EMORB-like geochemistry(Liu et al.,2015).Tuffaceous rocks in the Dajiweng massif are140 Ma in age and show OIB-like geochemistry.We interpret these age and geochemical data to reflect a rifted continental margin origin of the extrusive rock units in both sub-belts.These data and structural observations show that the western Yarluang Zangbo ophiolites represent fragments of an Ocean-Continent Transition(OCT)peridotites altered by fluids in an initial supersubduction setting.We infer that mafic-ultramafic rock assemblages exposed in the SSB and NSB initially formed in an ocean–continent transition zone(OCTZ)during the late Jurassic,and that they were subsequently emplaced in the forearc setting of an intraoceanic subduction zone within a Neotethyan seaway during 130 to 122 Ma.The NSB and SSB are hence part of a single,S-directed nappe sheet derived from a Neotethyan seaway located north of the Zhongba terrane.
文摘Original ecotourism resources mainly refer to natural and human original ecotourism resources, and it's of fragility, rarity and irreversibility. As a valuable historic heritage and hnportant tourism resources, it plays a significant role in developing tourism and economy in such areas as the underdeveloped areas, the mountain areas and mimority areas. The tourism resources in the western mountain areas of Guangxi owe ,superiorities and characteristics 'o their original ecology, Yet, western Guangxi is an ethnic region with fragile karst eco-environment, so it is specialto exploit the tourism resources. The paper defines original eeotourism and analyses the specialties and advantages of the original ecotourism resources as well as thefrailty of the ecotourism resources of the region. The ways of thinking are put forward for safe preservation and sustainable development of the original ecotourism resources, i.e. carrying out measures for the multi-grade protection of heritage resources, setting up a ethnic eco-museum/ ethnic culture eco-park and a gene pool of ethnic cultures, etc.
基金supported by the Fund Project of the Hengyang Normal University(2022QD11)the National Natural Science Foundation of China(Grant No.42105063).
文摘This study reveals the strengthened interdecadal relationship between the western North Pacific summer monsoon(WNPSM)and tropical central-western Pacific sea surface temperature anomaly(SSTA)in summer after the early 1990s.In the first period(1979–91,P1),the WNPSM-related precipitation anomaly and horizontal wind anomaly present themselves as an analogous Pacific-Japan(PJ)-like pattern,generally considered to be related to the Niño-3 index in the preceding winter.During the subsequent period(1994–2019,P2),the WNPSM-related precipitation anomaly presents a zonal dipole pattern,correlated significantly with the concurrent SSTA in the Niño-4 and tropical western Pacific regions.The negative(positive)SSTA in the tropical western Pacific and positive(negative)SSTA in the Niño-4 region,could work together to influence the WNPSM,noting that the two types of anomalous SSTA configurations enhance(weaken)the WNPSM by the positive(negative)phase PJ-like wave and Gill response,respectively,with an anomalous cyclone(anticyclone)located in the WNPSM,which shows obvious symmetry about the anomalous circulation.Specifically,the SSTA in Niño-4 impacts the WNPSM by an atmospheric Gill response,with a stronger(weaker)WNPSM along with a positive(negative)SSTA in the Niño-4 region.Furthermore,the SSTA in the tropical western Pacific exerts an influence on the WNPSM by a PJ-like wave,with a stronger(weaker)WNPSM along with a negative(positive)SSTA in the tropical western Pacific.In general,SSTAs in the tropical western Pacific and Niño-4 areas could work together to exert influence on the WNPSM,with the effect most likely to occur in the El Niño(La Niña)developing year in P2.However,the SSTAs in the tropical western Pacific worked alone to exert an influence on the WNPSM mainly in 2013,2014,2016,and 2017,and the SSTAs in the Niño-4 region worked alone to exert an influence on the WNPSM mainly in Central Pacific(CP)La Niña developing years.The sensitivity experiments also can reproduce the PJ-like wave/Gill response associated with SSTA in the tropical western Pacific/Niño-4 regions.Therefore,the respective and synergistic impacts from the Niño-4 region and the tropical western Pacific on the WNPSM have been revealed,which helps us to acquire a better understanding of the interdecadal variations of the WNPSM and its associated climate influences.
基金supported by the National Natural Science Foundation of China[Grant No.41505050]the Open Fund of the Key Laboratory of Ocean Circulation and Waves of the Chinese Academy of Sciences[Grant No.KLOCW1902].
文摘本文分析了El Nino事件衰减速度的差异对衰退年夏季西北太平洋热带气旋(tropical cyclone,TC)频数的不同影响。按照ElNiio事件衰减速度不同,将其划分为迅速衰减(rapid decaying,RD)和缓慢衰减(slowdecaying,SD)的El Nino事件.SD(RD)El Nino事件的衰退年夏季,赤道中东太平洋海温仍维持正异常(衰减为负异常).与SD El Nino事件相比,RDElNino事件衰退年夏季西北太平洋TC频数显著减少.进一步的分析揭示了导致TC频数差异的大尺度环境要素,指出热带印度洋-太平洋海温异常密切相关的西北太平洋低层反气旋异常在其中起到了关键作用。
文摘2024年春季(3—5月)我国平均降水量为163 mm,为1961年以来历史同期第六多,4—5月东部地区旱涝灾害并重,华南和江南大部降水较常年同期偏多,尤其是华南大部降水偏多5成以上,多次暴雨过程造成部分地区发生洪涝;而黄淮、江淮北部降水显著偏少,春季后期干旱迅速发展。春季“华南涝、黄淮旱”的形成与东亚大气环流关键系统异常及其季节内阶段性变化密切相关。4月异常偏强、偏南的西北太平洋副热带高压和低层850 hPa偏强的西北太平洋反气旋为华南和江南提供了有利的水汽输送条件,导致南方地区发生多次强降水过程;而黄淮干旱主要受4—5月持续偏强的朝鲜半岛-日本海高压(小笠原高压)和偏南的西北太平洋副热带高压共同影响。此外,春季El Ni o衰减和热带印度洋海温异常偏暖有助于激发异常偏强的西北太平洋反气旋,是我国南方强降水发生的重要海洋外强迫背景。