In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares...In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares(LS)estimator are investigated under mean square error matrix(MSEM)criterion.展开更多
In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic ...In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic mean, respectively, are proposed. It is shown that these new estimators dominate the unbiased estimator under the squared error loss function. Finally, some simulation results to compare the performance of the proposed estimators with that of the unbiased estimator are reported. The simulation results indicate that these new shrinkage estimators provide a substantial improvement in risk under most situations.展开更多
Most financial signals show time dependency that,combined with noisy and extreme events,poses serious problems in the parameter estimations of statistical models.Moreover,when addressing asset pricing,portfolio select...Most financial signals show time dependency that,combined with noisy and extreme events,poses serious problems in the parameter estimations of statistical models.Moreover,when addressing asset pricing,portfolio selection,and investment strategies,accurate estimates of the relationship among assets are as necessary as are delicate in a time-dependent context.In this regard,fundamental tools that increasingly attract research interests are precision matrix and graphical models,which are able to obtain insights into the joint evolution of financial quantities.In this paper,we present a robust divergence estimator for a time-varying precision matrix that can manage both the extreme events and time-dependency that affect financial time series.Furthermore,we provide an algorithm to handle parameter estimations that uses the“maximization–minimization”approach.We apply the methodology to synthetic data to test its performances.Then,we consider the cryptocurrency market as a real data application,given its remarkable suitability for the proposed method because of its volatile and unregulated nature.展开更多
In this paper, the performance of existing biased estimators (Ridge Estimator (RE), Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE), Almost Unbiased Liu Estimator (AULE), Principal Component Regression Esti...In this paper, the performance of existing biased estimators (Ridge Estimator (RE), Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE), Almost Unbiased Liu Estimator (AULE), Principal Component Regression Estimator (PCRE), r-k class estimator and r-d class estimator) and the respective predictors were considered in a misspecified linear regression model when there exists multicollinearity among explanatory variables. A generalized form was used to compare these estimators and predictors in the mean square error sense. Further, theoretical findings were established using mean square error matrix and scalar mean square error. Finally, a numerical example and a Monte Carlo simulation study were done to illustrate the theoretical findings. The simulation study revealed that LE and RE outperform the other estimators when weak multicollinearity exists, and RE, r-k class and r-d class estimators outperform the other estimators when moderated and high multicollinearity exist for certain values of shrinkage parameters, respectively. The predictors based on the LE and RE are always superior to the other predictors for certain values of shrinkage parameters.展开更多
The method of Zeng et al. (1991) employed diameter growth to estimate the transition probability of the matrix model in uneven-aged forest stands. In this paper the Weibull distribution for even-aged forest stands ins...The method of Zeng et al. (1991) employed diameter growth to estimate the transition probability of the matrix model in uneven-aged forest stands. In this paper the Weibull distribution for even-aged forest stands instead of uniform distribution chosen by Zeng is used. By comparing the results of the improved method with those of the original method of Zeng, it turns out that the improved method of Zeng given in this paper is more efficient.展开更多
Covariance matrix plays an important role in risk management, asset pricing, and portfolio allocation. Covariance matrix estimation becomes challenging when the dimensionality is comparable or much larger than the sam...Covariance matrix plays an important role in risk management, asset pricing, and portfolio allocation. Covariance matrix estimation becomes challenging when the dimensionality is comparable or much larger than the sample size. A widely used approach for reducing dimensionality is based on multi-factor models. Although it has been well studied and quite successful in many applications, the quality of the estimated covariance matrix is often degraded due to a nontrivial amount of missing data in the factor matrix for both technical and cost reasons. Since the factor matrix is only approximately low rank or even has full rank, existing matrix completion algorithms are not applicable. We consider a new matrix completion paradigm using the factor models directly and apply the alternating direction method of multipliers for the recovery. Numerical experiments show that the nuclear-norm matrix completion approaches are not suitable but our proposed models and algorithms are promising.展开更多
Using the fact that a multivariate random sample of n observations also generates n nearest neighbour distance (NND) univariate observations and from these NND observations, a set of n auxiliary observations can be ob...Using the fact that a multivariate random sample of n observations also generates n nearest neighbour distance (NND) univariate observations and from these NND observations, a set of n auxiliary observations can be obtained and with these auxiliary observations when combined with the original multivariate observations of the random sample, a class of pseudodistance?Dh?is allowed to be used and inference methods can be developed using this class of pseudodistances. The Dh?estimators obtained from this class can achieve high efficiencies and have robustness properties. Model testing also can be handled in a unified way by means of goodness-of-fit tests statistics derived from this class which have an asymptotic normal distribution. These properties make the developed inference methods relatively simple to implement and appear to be suitable for analyzing multivariate data which are often encountered in applications.展开更多
In this article, the Bayes linear unbiased estimation (BALUE) of parameters is derived for the partitioned linear model. The superiorities of the BALUE over ordinary least square estimator (LSE) are studied in ter...In this article, the Bayes linear unbiased estimation (BALUE) of parameters is derived for the partitioned linear model. The superiorities of the BALUE over ordinary least square estimator (LSE) are studied in terms of the Bayes mean square error matrix (BMSEM) criterion and Pitman closeness (PC) criterion.展开更多
A partially linear regression model with heteroscedastic and/or serially correlated errors is studied here. It is well known that in order to apply the semiparametric least squares estimation (SLSE) to make statisti...A partially linear regression model with heteroscedastic and/or serially correlated errors is studied here. It is well known that in order to apply the semiparametric least squares estimation (SLSE) to make statistical inference a consistent estimator of the asymptotic covariance matrix is needed. The traditional residual-based estimator of the asymptotic covariance matrix is not consistent when the errors are heteroscedastic and/or serially correlated. In this paper we propose a new estimator by truncating, which is an extension of the procedure in White. This estimator is shown to be consistent when the truncating parameter converges to infinity with some rate.展开更多
The objective of this paper is to quantify the complexity of rank and nuclear norm constrained methods for low rank matrix estimation problems. Specifically, we derive analytic forms of the degrees of freedom for thes...The objective of this paper is to quantify the complexity of rank and nuclear norm constrained methods for low rank matrix estimation problems. Specifically, we derive analytic forms of the degrees of freedom for these types of estimators in several common settings. These results provide efficient ways of comparing different estimators and eliciting tuning parameters. Moreover, our analyses reveal new insights on the behavior of these low rank matrix estimators. These observations are of great theoretical and practical importance. In particular, they suggest that, contrary to conventional wisdom, for rank constrained estimators the total number of free parameters underestimates the degrees of freedom, whereas for nuclear norm penalization, it overestimates the degrees of freedom. In addition, when using most model selection criteria to choose the tuning parameter for nuclear norm penalization, it oftentimes suffices to entertain a finite number of candidates as opposed to a continuum of choices. Numerical examples are also presented to illustrate the practical implications of our results.展开更多
基金the Knowledge Innovation Program of the Chinese Academy of Sciences(KJCX3-SYW-S02)the Youth Foundation of USTC
文摘In this article,the empirical Bayes(EB)estimators are constructed for the estimable functions of the parameters in partitioned normal linear model.The superiorities of the EB estimators over ordinary least-squares(LS)estimator are investigated under mean square error matrix(MSEM)criterion.
基金supported by the Funding Project for Academic Human Resources Development in Institutions of Higher Learning Under the Jurisdiction of Beijing Municipality (0506011200702)National Natural Science Foundation of China+2 种基金Tian Yuan Special Foundation (10926059)Foundation of Zhejiang Educational Committee (Y200803920)Scientific Research Foundation of Hangzhou Dianzi University(KYS025608094)
文摘In this article, the problem of estimating the covariance matrix in general linear mixed models is considered. Two new classes of estimators obtained by shrinking the eigenvalues towards the origin and the arithmetic mean, respectively, are proposed. It is shown that these new estimators dominate the unbiased estimator under the squared error loss function. Finally, some simulation results to compare the performance of the proposed estimators with that of the unbiased estimator are reported. The simulation results indicate that these new shrinkage estimators provide a substantial improvement in risk under most situations.
文摘Most financial signals show time dependency that,combined with noisy and extreme events,poses serious problems in the parameter estimations of statistical models.Moreover,when addressing asset pricing,portfolio selection,and investment strategies,accurate estimates of the relationship among assets are as necessary as are delicate in a time-dependent context.In this regard,fundamental tools that increasingly attract research interests are precision matrix and graphical models,which are able to obtain insights into the joint evolution of financial quantities.In this paper,we present a robust divergence estimator for a time-varying precision matrix that can manage both the extreme events and time-dependency that affect financial time series.Furthermore,we provide an algorithm to handle parameter estimations that uses the“maximization–minimization”approach.We apply the methodology to synthetic data to test its performances.Then,we consider the cryptocurrency market as a real data application,given its remarkable suitability for the proposed method because of its volatile and unregulated nature.
文摘In this paper, the performance of existing biased estimators (Ridge Estimator (RE), Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE), Almost Unbiased Liu Estimator (AULE), Principal Component Regression Estimator (PCRE), r-k class estimator and r-d class estimator) and the respective predictors were considered in a misspecified linear regression model when there exists multicollinearity among explanatory variables. A generalized form was used to compare these estimators and predictors in the mean square error sense. Further, theoretical findings were established using mean square error matrix and scalar mean square error. Finally, a numerical example and a Monte Carlo simulation study were done to illustrate the theoretical findings. The simulation study revealed that LE and RE outperform the other estimators when weak multicollinearity exists, and RE, r-k class and r-d class estimators outperform the other estimators when moderated and high multicollinearity exist for certain values of shrinkage parameters, respectively. The predictors based on the LE and RE are always superior to the other predictors for certain values of shrinkage parameters.
基金This paper was supported by the National Natural Science Foundation of China
文摘The method of Zeng et al. (1991) employed diameter growth to estimate the transition probability of the matrix model in uneven-aged forest stands. In this paper the Weibull distribution for even-aged forest stands instead of uniform distribution chosen by Zeng is used. By comparing the results of the improved method with those of the original method of Zeng, it turns out that the improved method of Zeng given in this paper is more efficient.
基金supported by National Natural Science Foundation of China(Grant Nos.10971122,11101274 and 11322109)Scientific and Technological Projects of Shandong Province(Grant No.2009GG10001012)Excellent Young Scientist Foundation of Shandong Province(Grant No.BS2012SF025)
文摘Covariance matrix plays an important role in risk management, asset pricing, and portfolio allocation. Covariance matrix estimation becomes challenging when the dimensionality is comparable or much larger than the sample size. A widely used approach for reducing dimensionality is based on multi-factor models. Although it has been well studied and quite successful in many applications, the quality of the estimated covariance matrix is often degraded due to a nontrivial amount of missing data in the factor matrix for both technical and cost reasons. Since the factor matrix is only approximately low rank or even has full rank, existing matrix completion algorithms are not applicable. We consider a new matrix completion paradigm using the factor models directly and apply the alternating direction method of multipliers for the recovery. Numerical experiments show that the nuclear-norm matrix completion approaches are not suitable but our proposed models and algorithms are promising.
文摘Using the fact that a multivariate random sample of n observations also generates n nearest neighbour distance (NND) univariate observations and from these NND observations, a set of n auxiliary observations can be obtained and with these auxiliary observations when combined with the original multivariate observations of the random sample, a class of pseudodistance?Dh?is allowed to be used and inference methods can be developed using this class of pseudodistances. The Dh?estimators obtained from this class can achieve high efficiencies and have robustness properties. Model testing also can be handled in a unified way by means of goodness-of-fit tests statistics derived from this class which have an asymptotic normal distribution. These properties make the developed inference methods relatively simple to implement and appear to be suitable for analyzing multivariate data which are often encountered in applications.
基金This research is supported by National Natural Science Foundation of China under Grant Nos. 10801123, 10801124 and 10771204, and the Knowledge Innovation Program of the Chinese Academy of Sciences under Grant No. KJCX3-SYW-S02.
文摘In this article, the Bayes linear unbiased estimation (BALUE) of parameters is derived for the partitioned linear model. The superiorities of the BALUE over ordinary least square estimator (LSE) are studied in terms of the Bayes mean square error matrix (BMSEM) criterion and Pitman closeness (PC) criterion.
基金Zhou's research was partially supported by the National Natural Science Foundation of China(No.10471140,10571169)
文摘A partially linear regression model with heteroscedastic and/or serially correlated errors is studied here. It is well known that in order to apply the semiparametric least squares estimation (SLSE) to make statistical inference a consistent estimator of the asymptotic covariance matrix is needed. The traditional residual-based estimator of the asymptotic covariance matrix is not consistent when the errors are heteroscedastic and/or serially correlated. In this paper we propose a new estimator by truncating, which is an extension of the procedure in White. This estimator is shown to be consistent when the truncating parameter converges to infinity with some rate.
基金supported by National Science Foundation of USA (Grant No. DMS1265202)National Institutes of Health of USA (Grant No. 1-U54AI117924-01)
文摘The objective of this paper is to quantify the complexity of rank and nuclear norm constrained methods for low rank matrix estimation problems. Specifically, we derive analytic forms of the degrees of freedom for these types of estimators in several common settings. These results provide efficient ways of comparing different estimators and eliciting tuning parameters. Moreover, our analyses reveal new insights on the behavior of these low rank matrix estimators. These observations are of great theoretical and practical importance. In particular, they suggest that, contrary to conventional wisdom, for rank constrained estimators the total number of free parameters underestimates the degrees of freedom, whereas for nuclear norm penalization, it overestimates the degrees of freedom. In addition, when using most model selection criteria to choose the tuning parameter for nuclear norm penalization, it oftentimes suffices to entertain a finite number of candidates as opposed to a continuum of choices. Numerical examples are also presented to illustrate the practical implications of our results.