The transformation behavior and tensile properties of an ultra-high-strength transformation-induced plasticity (TRIP) steel (0.2C-2.0Si-I.SMn) were investigated by different heat treatments for automobile applicat...The transformation behavior and tensile properties of an ultra-high-strength transformation-induced plasticity (TRIP) steel (0.2C-2.0Si-I.SMn) were investigated by different heat treatments for automobile applications. The results show that F-TRIP steel, a tradi- tional TRIP steel containing as-cold-rolled ferfite and pearlite as the original microstructure, consists of equiaxed grains of intercritical ferrite surrounded by discrete particles of M/RA and B. In contrast, M-TRIP steel, a modified TRiP-aided steel with martensite as the original mi- crostlucture, containing full martensite as the original microstructure is comprised of lath-shaped grains of ferrite separated by lath-shaped martensite/retained austenite and bainite. Most of the austenite in F-TRIP steel is granular, while the austenite in M-TRIP steel is lath-shaped. The volume fraction of the retained austenite as well as its carbon content is lower in F-TRIP steel than in M-TRIP steel, and austenite grains in M-TRIP steel are much finer than those in F-TRIP steel. Therefore, M-TRIP steel was concluded to have a higher austenite stability, re- sulting in a lower transformation rate and consequently contributing to a higher elongation compared to F-TRIP steel. Work hardening be- havior is also discussed for both types of steel.展开更多
In this study,directional solidification was utilized to explore the relationship between microstructure,mechanical properties,and withdrawal speeds of Zn-55Al-1.6Si alloys.In order to assess the characteristics of Zn...In this study,directional solidification was utilized to explore the relationship between microstructure,mechanical properties,and withdrawal speeds of Zn-55Al-1.6Si alloys.In order to assess the characteristics of Zn-55Al-1.6Si alloys,both the microstructure and mechanical properties were thoroughly analyzed.This involved conducting room temperature tensile tests on samples with different withdrawal speeds(5,10,100,200,and 400μm·s^(-1)).The results reveal that both the as-cast alloy and samples after directional solidification are composed of zinc,aluminum,and silicon phases.As the withdrawal speed increases,an evident decrease in the size of the primary dendrites is observed.The results of tensile experiments show that Zn-55Al-1.6Si alloys after directional solidification exhibit brittle fracture characteristics,both the tensile strength and elongation of the alloys increase with withdrawal speed.展开更多
The low carbon Nb-Ti mieroalloyed tested steel was prepared by the process of vacuum induction furnace smelting, forging and hot rolling. The new steel aims to meet the demand of high strength, high toughness and high...The low carbon Nb-Ti mieroalloyed tested steel was prepared by the process of vacuum induction furnace smelting, forging and hot rolling. The new steel aims to meet the demand of high strength, high toughness and high plasticity for building facilities. The effects of quenching process on microstructure and mechanical properties of tested steel were investigated. The results showed that prior austenite grain size, phase type and precipitation behavior of ( Nb, Ti) ( C, N) play important roles in mechanical properties of the steel. Through modified appropriately, the model of austenite grain growth during heating and holding is d^5.7778 = 5. 6478^5.7778 + 7.04 × 10^22t^1.6136 exp(- 427. 15 ×10^3 /(RT)). The grain growth activation energy is Qg = 427. 15 kJ. During quenching, the microscopic structures are mainly martensite and lath bainite which contains lots of lath substructure and dislocations. The content of phases, fine and coarsening ( Nb, Ti ) ( C, N ) precipitated changes during different quenching temperatures and holding time. Finally compared with the hardness value, the best quenching process can be obtained that heating temperature and holding time are 900 ℃ and 50 mins, respectively.展开更多
Directional solidification of Mg-2.35Gd (mass fraction, %) magnesium alloy was carried out to investigate the effects of the solidification parameters (growth rate v and temperature gradient G) on microstructure a...Directional solidification of Mg-2.35Gd (mass fraction, %) magnesium alloy was carried out to investigate the effects of the solidification parameters (growth rate v and temperature gradient G) on microstructure and room temperature mechanical properties under the controlled solidification conditions. The specimens were solidified under steady state conditions with different temperature gradients (G=20, 25 and 30 K/mm) in a wide range of growth rates (v=10-200 μm/s) by using a Bridgman-type directional solidification furnace with liquid metal cooling (LMC) technology. The cellular microstructures are observed. The cellular spacing 2 decreases with increasing v for constant G or with increasing G for constant v. By using a linear regression analysis the relationships can be expressed as 2=136.216v^-0.2440 (G=30 K/mm) and 2=626.5630G^-0.5625 (v=10 μm/s), which are in a good agreement with Trivedi model. An improved tensile strength and a corresponding decreased elongation are achieved in the directionally solidified experimental alloy with increasing growth rate and tempertaure gradient. Furthermore, the directionally solidified experimental alloy exhibits higher room temperature tensile strength than the non-directionally solidified alloy.展开更多
Optical microscope, stereomicroscope, scanning electronic microscope (SEM) and mechanical property testing were used to research the effects of different quenching temperatures on the microstructure and mechanical p...Optical microscope, stereomicroscope, scanning electronic microscope (SEM) and mechanical property testing were used to research the effects of different quenching temperatures on the microstructure and mechanical properties of the H13 mandrel steel. The results indicate that following an increase in the quenching ,the degree of alloying is enhanced due to the carbides dissolving gradually in austenite, which improves the hardenability of the specimens, as well as their room and high-temperature strength. At the same time, the fracture toughness increases due to the increment of the martensite number and the interparticle distance of impact toughness. Optimal performance Consequently,the service life of the H13 the carbides. However, extremely coarse grain and martensite can decrease the can be obtained after quenching at 1 060℃ and double tempering at 620℃mandrel steel is extended significantly.展开更多
The Mg-3.0Nd-0.2Zn-0.4Zr (NZ30K) alloys were prepared by direct-chill casting (DCC) and sand mould casting (SMC) processes,respectively and their microstructures and mechanical properties were investigated.The results...The Mg-3.0Nd-0.2Zn-0.4Zr (NZ30K) alloys were prepared by direct-chill casting (DCC) and sand mould casting (SMC) processes,respectively and their microstructures and mechanical properties were investigated.The results indicate that casting method plays a remarkable influence on the microstructure and mechanical properties of as-cast NZ30K alloy.The grain size increases from 35-40μm in the billets made by the DCC to about 100-120μm in the billets by the SMC.The aggregation of Mg12Nd usually found at the triple joints of grain boundaries in the billets prepared by SMC while is not observable from the billets by DCC.The tensile strengths and elongations of the billets are 195.2 MPa and 15.5% by DCC,and 162.5 MPa and 3.2% by SMC,respectively.The tensile strength of the alloy by DCC is remarkably enhanced by T6 heat treatment,which reached 308.5 MPa.Fracture surfaces of NZ30K alloy have been characterized as intergranular fracture by SMC and quasi-cleavage fracture by DCC,respectively.展开更多
The effects of direct quenching and tempering (DQ-T) process and conventional reheat quenching and tempering (RQ-T) processes on mechanical properties and microstructure of high strength steel were investigated. T...The effects of direct quenching and tempering (DQ-T) process and conventional reheat quenching and tempering (RQ-T) processes on mechanical properties and microstructure of high strength steel were investigated. The DQ process was found to enhance the hardenability of steel effectively. The tensile strength and yield strength of DQ specimen was 975 MPa and 925 MPa respectively, which were higher than those of RQ specimen's of 920 MPa and 871 MPa. In contrast, low temperature toughness (-40 ℃, AKV) of DQ-T specimen (124 J) was generally inferior to that of RQ-T specimen (156 J). The direct quenching temperature was one of the potential process parameters to determine strength/toughness balance of steel manufactured by DQ process. The experimental results showed that excellent strength/toughness balance was obtained when the specimens was quenched at temperature in the range of 850-910 ℃. The yield strength and impact energy (-40 ℃) of DQ steel decreased significantly with increasing of quenching temperature, although the tensile strength was nearly stable.展开更多
High-quality Mg-Nd-Zn-Zr magnesium alloy billets with diameter of 200 mm were successfully prepared by direct chill(DC)casting.The results show that microstructures of the as-cast billet prepared by DC casting are mai...High-quality Mg-Nd-Zn-Zr magnesium alloy billets with diameter of 200 mm were successfully prepared by direct chill(DC)casting.The results show that microstructures of the as-cast billet prepared by DC casting are mainly composed of equiaxed a-Mg and Mg 12 Nd eutectic compound distributing along the grain boundaries.The average grain size decreases along the radius of the billet.And the alloying elements of Nd and Zn distribute homogeneously across the large billet.The optimum process parameters for DC casting of the Mg-Nd-Zn-Zr magnesium alloy billet with diameter of 200 mm have been experimentally determined as follows:casting temperature 710℃ and casting speed 80 mm/min.展开更多
The present work focused on the Ni_3Al-based alloy with a high melting point. The aim of the research is to study the effect of withdrawal rate on the microstructures and mechanical properties of directionally solidif...The present work focused on the Ni_3Al-based alloy with a high melting point. The aim of the research is to study the effect of withdrawal rate on the microstructures and mechanical properties of directionally solidified Ni-25 Al alloy. Ni_3 Al intermetallics were prepared at different withdrawal rates by directional solidification(DS) in an electromagnetic cold crucible directional solidification furnace. The DS samples contain Ni_3 Al and Ni Al phases. The primary dendritic spacing(λ) decreases with the increasing of withdrawal rate(V), and the volume fraction of Ni Al phase increases as the withdrawal rate increases. Results of tensile tests show that ductility of DS samples is enhanced with a decrease in the withdrawal rate.展开更多
Direct laser deposition(DLD),as a popular metal additive manufacturing process,shows advantages of technical flexibility and high efficiency to gain a high-performance alloy steel component.However,during the processi...Direct laser deposition(DLD),as a popular metal additive manufacturing process,shows advantages of technical flexibility and high efficiency to gain a high-performance alloy steel component.However,during the processing of DLD,the deposited steel layer is affected by the subsequent layer depositing.The DLD block shows different microstructure and mechanical properties at the bottom,middle and top of the deposited parts.To date,there are few research works about the effects of inter-layer interval time and laser power on the microstructure evolution and mechanical properties of the deposited layers.In this study,the idle time and laser power layer by layer during DLD of 12CrNi2 steel were controlled to cause the deposited layers to maintain a high cooling rate,while the bottom deposited layer was subjected to a weak tempering effect.Results show that a high proportion of martensite is produced,which improves the strength of the deposited layer.Under the laser scanning strategy of laser power 2,500 W,scanning velocity 5 mm·s^(-1),powder feeding rate 11 g·min^(-1),overlap rate 50%,and a laser power difference of 50 W and a 2 min interval,the tensile strength of the deposited layer of 12CrNi2 steel is in the range of 873-1,022 MPa,and the elongation is in the range of 16.2%-18.9%.This study provides a method to reduce the tempering effect of the subsequent deposition layers on the bottom layers,which can increase the proportion of martensite in the low-alloy high-strength steel,so as to improve the yield strength of the alloy steel.展开更多
In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. A...In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. According to the results of scanning electron microscopy and transmission electron microscopy observations, X-ray diffraction analysis, and tensile tests, upper bainite or tempered martensite appears successively in the microstructure with increasing austenitization temperature or increasing partitioning time. In the partially austenitized specimens, the retained austenite grains are carbon-enriched twice during the heat treatment, which can significantly stabilize the phases at room temperature. Furthermore, after partial austenitization, the specimen exhibits excellent elongation, with a maximum elongation of 37.1%. By contrast, after full austenitization, the specimens exhibit good ultimate tensile strength and high yield strength. In the case of a specimen with a yield strength of 969 MPa, the maximum value of the ultimate tensile strength reaches 1222 MPa. During the partitioning process, carbon partitioning and carbon homogenization within austenite affect interface migration. In addition, the volume fraction and grain size of retained austenite observed in the final microstructure will also be affected.展开更多
A wear-resistant steel was hot rolled at the same finish temperature, and subsequently treated with conventional reheat quenching and tempering process (RQ&T) and direct quenching and tempering process (DQ&T), r...A wear-resistant steel was hot rolled at the same finish temperature, and subsequently treated with conventional reheat quenching and tempering process (RQ&T) and direct quenching and tempering process (DQ&T), respectively. The effect of direct quenching on the microstructure and mechanical properties was investigated in detail by using optical microscope, transmission electron microscope and scanning electron microscope equipped with electron backscattered diffraction. The results showed that the microstructures of both the RQ and DQ specimens were complex constituents of lath martensite and lower bainite. Compared with the RQ specimen, the lower bainite content in DQ specimen was much higher. Furthermore, the bainite in the DQ specimen extended into and segmented the prior austenite grains, which can decrease martensite packet size. The proportion of high-angle boundary in the DQ specimen was higher than that in the RQ specimen, which may improve the impact toughness. The carbides in DQ&_T specimen were much finer and distributed even dispersively because direct quenching can retain substantive defects which may provide more nucleation sites for carbide precipitation in the tempering process. Besides, the mechanical properties of DQ and DQ&T specimens were superior than those subjected to RQ and RQ&T processes, respectively.展开更多
The influence of direct quenching (DQ) on microstructure and mechanical properties of 0.19C-1.7Si-1.0 Mn-0.05Nb steel was studied. The microstructure and mechanical properties of reheat quenched and tempered (RQ&T...The influence of direct quenching (DQ) on microstructure and mechanical properties of 0.19C-1.7Si-1.0 Mn-0.05Nb steel was studied. The microstructure and mechanical properties of reheat quenched and tempered (RQ&T) steel plate were compared with those of direct quenched and tempered (DQ&T) steel plates which were hot rolled at different finish rolling tem-peratures (1173 K and 1123 K), i.e., recrystallization-controlled-rolled direct-quenched (RCR&DQ) and controlled-rolled direct-quenched (CR&DQ), respectively. The strengths generally increased in the following order: RQ&T<RCR&DQ&T< CR&DQ&T. Strength differences between the CR&DQ&T and RQ&T conditions as high as 14% were observed at the tempered temperature of 573 K. The optical microscopy of the CR&DQ&T steel showed deformed grains elongated along the rolling direction, while complete equiaxed grains were visible in RQ&T and RCR&DQ&T steels. Transmission electron microscopy (TEM) and electron backscattering diffraction (EBSD) of the DQ steels showed smaller block width and higher density of dislocations. Inheritance of austenite deformation substructure by the martensite and differences in martensite block width were ruled out as major causes for the strength differences between DQ and RQ steels.展开更多
The microstructure and mechanical properties of cast inserted dies for automobile covering components were studied. The results show that the as-cast microstructures of cast inserted dies are composed of pearlite, mar...The microstructure and mechanical properties of cast inserted dies for automobile covering components were studied. The results show that the as-cast microstructures of cast inserted dies are composed of pearlite, martensite, bainite, and austenite; and that the annealed microstructure is granular pearlite. The mechanical properties of cast inserted dies approach that of forged inserted dies. The tensile strength is 855 MPa, the elongation is 16%, the impact toughness is 177 J/cm2, and the hardness after annealing and quenching are HRC 19 and HRC 60-62. In addition, the cast inserted dies have good hardenability. The depth of the hardening zone and the hardness after flame quenching satisfy the operating requirements. The cast inserted dies could completely replace the forged inserted dies for making the dies of automobile covering components.展开更多
7075 aluminum alloy thick plates were produced by three processing routines: commercial hot rolling followed by heat treatment of quenching and ageing (HR+QA), combination of large deformation processing of multi dire...7075 aluminum alloy thick plates were produced by three processing routines: commercial hot rolling followed by heat treatment of quenching and ageing (HR+QA), combination of large deformation processing of multi directional warm forging and subsequent warm rolling followed by heat treatment of quenching and ageing (LD+QA), and that followed by annealing at moderate temperature (LD+AN). Tensile strength, yield strength and elongation were measured by tension test, and the metallographic structures were examined by optical microscopy (OM) and transmission electron microscopy (TEM), also the fracture morphologies were observed by scanning electron microscopy (SEM). It is shown that higher tensile strength and yield strength are obtained from (LD+QA) processing in comparison with those from (HR+QA) and (LD+AN) processings. Tensile strength and yield strength obtained from (LD+QA) processing are 9.9% and 8.6% higher respectively than those from (HR+QA) processing, and 48.6% and 57.7% higher respectively than those from (LD+AN) processing; while the elongations of all the samples show no significant difference and keep 10%12%. Analyses of OM and TEM reveal that the mechanical behaviors are deeply associated with the formation of refined structures with fine grains and very fine precipitates, leading to fine grained hardening and excellent age hardening.展开更多
This work aims to establish the effect of laser energy area density(EAD) as the laser incident energy on density, microstructures and mechanical properties of direct laser deposition(DLD) 12CrNi2 Y alloy steel.The res...This work aims to establish the effect of laser energy area density(EAD) as the laser incident energy on density, microstructures and mechanical properties of direct laser deposition(DLD) 12CrNi2 Y alloy steel.The results show that the density of DLD 12CrNi2 Y alloy steel increases at initial stage and then decreases with an increase of EAD, the highest density of alloy steel sample is 98.95%. The microstructures of DLD12CrNi2 Y alloy steel samples are composed of bainite, ferrite and carbide. With increase of EAD, the microstructures transform from polygonal ferrite(PF) to granular bainite(GB). The martensite-austenite constituent(M-A) in GB transforms from flake-like paralleling to the bainite ferrite laths to granular morphology. It is also found that the average width of laths in finer GB can be refined from 532 nm to 302 nm, which improves the comprehensive properties of DLD 12 CrNi2 Y alloy steel such as high hardness of 342 ± 9 HV_(0.2), yield strength of 702 ± 16 MPa, tensile strength of 901 ± 14 MPa and large elongation of15.2%±0.6%. The DLD 12CrNi2 Y material with good strength and toughness could meet the demand of alloy steel components manufacturing.展开更多
In this work,ultrasonic micro-forging treatment(UMFT)was introduced to achieve homogeneous microstructure,reduce defects and improve mechanical properties of GH3039 superalloy cladding layer processed by directed ener...In this work,ultrasonic micro-forging treatment(UMFT)was introduced to achieve homogeneous microstructure,reduce defects and improve mechanical properties of GH3039 superalloy cladding layer processed by directed energy deposition(DED).The microstructure,defects and mechanical properties of the cladding layers treated by UMFT with different ultrasonic powers(UIPs)were investigated.Results revealed a gradient structure as equiaxed grains distributed at the top,a columnar-to-equiaxed transition(CET)region that mixed of columnar dendrites and equiaxed grains distributed at the middle and columnar dendrites at the bottom of the cladding layer was formed.After UMFT,the proportion of equiaxed grains was increased,the average size of equiaxed grains was refined to 10μm from 16μm,the orientation of grains was more uniform and the phases enriched of Al,Ti,C,Nb and Mo were precipitated.The grain refinement can be attributed to the fracture of columnar dendrites induced by the ultrasonic vibration during solidification.Besides,the porosity of the cladding layer was reduced after UMFT.The microhardness of the cladding layers exhibited a depth-dependent gradient at the top region.The microhardness of the top surface was the highest and showed an increasing trend with the increase of UIP.The microhardness of different grain morphologies exhibited no substantial difference.However,due to grain refinement and precipitation of strengthening phase induced by UMFT,the microhadness of some local locations were improved.These results indicated UMFT has a significant effect on improving the microstructure,defects and mechanical properties of the deposited cladding layer.展开更多
An experimental apparatus with cooling system and pressure-adjustment assembly for simulating quench- ing was constructed to investigate the effect of contact pressure on the microstructures and mechanical properties ...An experimental apparatus with cooling system and pressure-adjustment assembly for simulating quench- ing was constructed to investigate the effect of contact pressure on the microstructures and mechanical properties of hot stamping parts. Qualitative and quantitative analyses of the microstructures of the as quenched parts were con- ducted; moreover, hardness and tensile tests were performed to measure their mechanical properties. The results in- dicated that contact pressure during quenching strongly affected the structures and performances of hot-stamping components. An excessive low contact pressure led to insufficient martensitic transformation. The critical contact pressure for complete martensitic transformation for 4.0 mm 22MnB5 steel was 0.4 MPa when the temperature of the coolant was 20 ℃. However, in consideration of the efficiency of practical production, a contact pressure higher than 1.25 MPa is recommended.展开更多
Mg-5Li-1Al-0.5Y alloy was rolled with different directions.The microstructure,mechanical properties and texture of the specimens were investigated with optical microscope,tensile tester and X-ray diffraction.The resul...Mg-5Li-1Al-0.5Y alloy was rolled with different directions.The microstructure,mechanical properties and texture of the specimens were investigated with optical microscope,tensile tester and X-ray diffraction.The results show that changing rolling directions can refine the grain size of as-rolled alloys.Meanwhile,rolling directions have an obvious influence on the mechanical properties and texture of Mg-5Li-1Al-0.5Y alloy,thus affecting the anisotropy of the alloy.The sheet,of which the RD(rolling direction)and ND(normal direction)are both changed between two passes,possesses the smallest anisotropy.From the texture results,changing rolling directions reduces the maximum pole density,making the highest point distribution region excursion and the highest point distributes more scatteredly.展开更多
基金financially supported by the National Natural Science Foundation of China (No. 51271035)The financial support of the Beijing Laboratory of Metallic Materials and Processing for Modern Transportation
文摘The transformation behavior and tensile properties of an ultra-high-strength transformation-induced plasticity (TRIP) steel (0.2C-2.0Si-I.SMn) were investigated by different heat treatments for automobile applications. The results show that F-TRIP steel, a tradi- tional TRIP steel containing as-cold-rolled ferfite and pearlite as the original microstructure, consists of equiaxed grains of intercritical ferrite surrounded by discrete particles of M/RA and B. In contrast, M-TRIP steel, a modified TRiP-aided steel with martensite as the original mi- crostlucture, containing full martensite as the original microstructure is comprised of lath-shaped grains of ferrite separated by lath-shaped martensite/retained austenite and bainite. Most of the austenite in F-TRIP steel is granular, while the austenite in M-TRIP steel is lath-shaped. The volume fraction of the retained austenite as well as its carbon content is lower in F-TRIP steel than in M-TRIP steel, and austenite grains in M-TRIP steel are much finer than those in F-TRIP steel. Therefore, M-TRIP steel was concluded to have a higher austenite stability, re- sulting in a lower transformation rate and consequently contributing to a higher elongation compared to F-TRIP steel. Work hardening be- havior is also discussed for both types of steel.
基金funded by the Key Science and Technology Projects of Gansu Province(Grant No.22ZD6GB019)the Gansu Key Research and Development Project(Grant No.23YFGA0003)+2 种基金the Gansu Provincial Joint Research Fund(Grant No.23JRRC0004)the Fundamental Research Funds for the Central Universities(Grant No.lzujbky-2022-ey15)the fund of the State Key Laboratory of Solidification Processing in NPU(Grant No.SKLSP202204).
文摘In this study,directional solidification was utilized to explore the relationship between microstructure,mechanical properties,and withdrawal speeds of Zn-55Al-1.6Si alloys.In order to assess the characteristics of Zn-55Al-1.6Si alloys,both the microstructure and mechanical properties were thoroughly analyzed.This involved conducting room temperature tensile tests on samples with different withdrawal speeds(5,10,100,200,and 400μm·s^(-1)).The results reveal that both the as-cast alloy and samples after directional solidification are composed of zinc,aluminum,and silicon phases.As the withdrawal speed increases,an evident decrease in the size of the primary dendrites is observed.The results of tensile experiments show that Zn-55Al-1.6Si alloys after directional solidification exhibit brittle fracture characteristics,both the tensile strength and elongation of the alloys increase with withdrawal speed.
基金Sponsored by the Major State Basic Research Development Program of China(Grant No.2010CB630801)
文摘The low carbon Nb-Ti mieroalloyed tested steel was prepared by the process of vacuum induction furnace smelting, forging and hot rolling. The new steel aims to meet the demand of high strength, high toughness and high plasticity for building facilities. The effects of quenching process on microstructure and mechanical properties of tested steel were investigated. The results showed that prior austenite grain size, phase type and precipitation behavior of ( Nb, Ti) ( C, N) play important roles in mechanical properties of the steel. Through modified appropriately, the model of austenite grain growth during heating and holding is d^5.7778 = 5. 6478^5.7778 + 7.04 × 10^22t^1.6136 exp(- 427. 15 ×10^3 /(RT)). The grain growth activation energy is Qg = 427. 15 kJ. During quenching, the microscopic structures are mainly martensite and lath bainite which contains lots of lath substructure and dislocations. The content of phases, fine and coarsening ( Nb, Ti ) ( C, N ) precipitated changes during different quenching temperatures and holding time. Finally compared with the hardness value, the best quenching process can be obtained that heating temperature and holding time are 900 ℃ and 50 mins, respectively.
基金Projects(51227001,51420105005)supported by the National Natural Science Foundation of ChinaProject(138-QP-2015)supported by the Research Fund of the State Key Laboratory of Solidification Processing(NWPU),China
文摘Directional solidification of Mg-2.35Gd (mass fraction, %) magnesium alloy was carried out to investigate the effects of the solidification parameters (growth rate v and temperature gradient G) on microstructure and room temperature mechanical properties under the controlled solidification conditions. The specimens were solidified under steady state conditions with different temperature gradients (G=20, 25 and 30 K/mm) in a wide range of growth rates (v=10-200 μm/s) by using a Bridgman-type directional solidification furnace with liquid metal cooling (LMC) technology. The cellular microstructures are observed. The cellular spacing 2 decreases with increasing v for constant G or with increasing G for constant v. By using a linear regression analysis the relationships can be expressed as 2=136.216v^-0.2440 (G=30 K/mm) and 2=626.5630G^-0.5625 (v=10 μm/s), which are in a good agreement with Trivedi model. An improved tensile strength and a corresponding decreased elongation are achieved in the directionally solidified experimental alloy with increasing growth rate and tempertaure gradient. Furthermore, the directionally solidified experimental alloy exhibits higher room temperature tensile strength than the non-directionally solidified alloy.
文摘Optical microscope, stereomicroscope, scanning electronic microscope (SEM) and mechanical property testing were used to research the effects of different quenching temperatures on the microstructure and mechanical properties of the H13 mandrel steel. The results indicate that following an increase in the quenching ,the degree of alloying is enhanced due to the carbides dissolving gradually in austenite, which improves the hardenability of the specimens, as well as their room and high-temperature strength. At the same time, the fracture toughness increases due to the increment of the martensite number and the interparticle distance of impact toughness. Optimal performance Consequently,the service life of the H13 the carbides. However, extremely coarse grain and martensite can decrease the can be obtained after quenching at 1 060℃ and double tempering at 620℃mandrel steel is extended significantly.
基金supported by the National High-tech R&D Program of China (863 Program),grant No.2009AA03Z521the foundation of Shanghai Rising-Star Program (A type),grant No. 09QA1403100
文摘The Mg-3.0Nd-0.2Zn-0.4Zr (NZ30K) alloys were prepared by direct-chill casting (DCC) and sand mould casting (SMC) processes,respectively and their microstructures and mechanical properties were investigated.The results indicate that casting method plays a remarkable influence on the microstructure and mechanical properties of as-cast NZ30K alloy.The grain size increases from 35-40μm in the billets made by the DCC to about 100-120μm in the billets by the SMC.The aggregation of Mg12Nd usually found at the triple joints of grain boundaries in the billets prepared by SMC while is not observable from the billets by DCC.The tensile strengths and elongations of the billets are 195.2 MPa and 15.5% by DCC,and 162.5 MPa and 3.2% by SMC,respectively.The tensile strength of the alloy by DCC is remarkably enhanced by T6 heat treatment,which reached 308.5 MPa.Fracture surfaces of NZ30K alloy have been characterized as intergranular fracture by SMC and quasi-cleavage fracture by DCC,respectively.
基金Funded by the Scientific Research Foundation for Young Teachers (N090307004)the Fundamental Funds for the Central Universities of China (N100607002)
文摘The effects of direct quenching and tempering (DQ-T) process and conventional reheat quenching and tempering (RQ-T) processes on mechanical properties and microstructure of high strength steel were investigated. The DQ process was found to enhance the hardenability of steel effectively. The tensile strength and yield strength of DQ specimen was 975 MPa and 925 MPa respectively, which were higher than those of RQ specimen's of 920 MPa and 871 MPa. In contrast, low temperature toughness (-40 ℃, AKV) of DQ-T specimen (124 J) was generally inferior to that of RQ-T specimen (156 J). The direct quenching temperature was one of the potential process parameters to determine strength/toughness balance of steel manufactured by DQ process. The experimental results showed that excellent strength/toughness balance was obtained when the specimens was quenched at temperature in the range of 850-910 ℃. The yield strength and impact energy (-40 ℃) of DQ steel decreased significantly with increasing of quenching temperature, although the tensile strength was nearly stable.
基金supported by National Natural Science Foundation of China(Grant No.51775329 and 51605280)the Foundation of Shanghai youth teacher training scheme(Grant No.ZZSHOU16016)the Doctoral Scientific Re-search Foundation of Shanghai Ocean University(Grant No.A2-0203-17-100325).
文摘High-quality Mg-Nd-Zn-Zr magnesium alloy billets with diameter of 200 mm were successfully prepared by direct chill(DC)casting.The results show that microstructures of the as-cast billet prepared by DC casting are mainly composed of equiaxed a-Mg and Mg 12 Nd eutectic compound distributing along the grain boundaries.The average grain size decreases along the radius of the billet.And the alloying elements of Nd and Zn distribute homogeneously across the large billet.The optimum process parameters for DC casting of the Mg-Nd-Zn-Zr magnesium alloy billet with diameter of 200 mm have been experimentally determined as follows:casting temperature 710℃ and casting speed 80 mm/min.
基金financially supported by the National Natural Science Foundation of China(Grant No.51471062)
文摘The present work focused on the Ni_3Al-based alloy with a high melting point. The aim of the research is to study the effect of withdrawal rate on the microstructures and mechanical properties of directionally solidified Ni-25 Al alloy. Ni_3 Al intermetallics were prepared at different withdrawal rates by directional solidification(DS) in an electromagnetic cold crucible directional solidification furnace. The DS samples contain Ni_3 Al and Ni Al phases. The primary dendritic spacing(λ) decreases with the increasing of withdrawal rate(V), and the volume fraction of Ni Al phase increases as the withdrawal rate increases. Results of tensile tests show that ductility of DS samples is enhanced with a decrease in the withdrawal rate.
基金the National Key Technologies Research and Development Program of China(Grant No.2016YFB1100200)。
文摘Direct laser deposition(DLD),as a popular metal additive manufacturing process,shows advantages of technical flexibility and high efficiency to gain a high-performance alloy steel component.However,during the processing of DLD,the deposited steel layer is affected by the subsequent layer depositing.The DLD block shows different microstructure and mechanical properties at the bottom,middle and top of the deposited parts.To date,there are few research works about the effects of inter-layer interval time and laser power on the microstructure evolution and mechanical properties of the deposited layers.In this study,the idle time and laser power layer by layer during DLD of 12CrNi2 steel were controlled to cause the deposited layers to maintain a high cooling rate,while the bottom deposited layer was subjected to a weak tempering effect.Results show that a high proportion of martensite is produced,which improves the strength of the deposited layer.Under the laser scanning strategy of laser power 2,500 W,scanning velocity 5 mm·s^(-1),powder feeding rate 11 g·min^(-1),overlap rate 50%,and a laser power difference of 50 W and a 2 min interval,the tensile strength of the deposited layer of 12CrNi2 steel is in the range of 873-1,022 MPa,and the elongation is in the range of 16.2%-18.9%.This study provides a method to reduce the tempering effect of the subsequent deposition layers on the bottom layers,which can increase the proportion of martensite in the low-alloy high-strength steel,so as to improve the yield strength of the alloy steel.
基金funded by China Scholarship Council (No. 201406460053)
文摘In this work, low-carbon steel specimens were subjected to the quenching and partitioning process after being partially or fully austenitized to investigate their microstructural evolution and mechanical properties. According to the results of scanning electron microscopy and transmission electron microscopy observations, X-ray diffraction analysis, and tensile tests, upper bainite or tempered martensite appears successively in the microstructure with increasing austenitization temperature or increasing partitioning time. In the partially austenitized specimens, the retained austenite grains are carbon-enriched twice during the heat treatment, which can significantly stabilize the phases at room temperature. Furthermore, after partial austenitization, the specimen exhibits excellent elongation, with a maximum elongation of 37.1%. By contrast, after full austenitization, the specimens exhibit good ultimate tensile strength and high yield strength. In the case of a specimen with a yield strength of 969 MPa, the maximum value of the ultimate tensile strength reaches 1222 MPa. During the partitioning process, carbon partitioning and carbon homogenization within austenite affect interface migration. In addition, the volume fraction and grain size of retained austenite observed in the final microstructure will also be affected.
基金financially supported by the National Natural Science Foundation of China(Nos.51074052 and 51004035)
文摘A wear-resistant steel was hot rolled at the same finish temperature, and subsequently treated with conventional reheat quenching and tempering process (RQ&T) and direct quenching and tempering process (DQ&T), respectively. The effect of direct quenching on the microstructure and mechanical properties was investigated in detail by using optical microscope, transmission electron microscope and scanning electron microscope equipped with electron backscattered diffraction. The results showed that the microstructures of both the RQ and DQ specimens were complex constituents of lath martensite and lower bainite. Compared with the RQ specimen, the lower bainite content in DQ specimen was much higher. Furthermore, the bainite in the DQ specimen extended into and segmented the prior austenite grains, which can decrease martensite packet size. The proportion of high-angle boundary in the DQ specimen was higher than that in the RQ specimen, which may improve the impact toughness. The carbides in DQ&_T specimen were much finer and distributed even dispersively because direct quenching can retain substantive defects which may provide more nucleation sites for carbide precipitation in the tempering process. Besides, the mechanical properties of DQ and DQ&T specimens were superior than those subjected to RQ and RQ&T processes, respectively.
文摘The influence of direct quenching (DQ) on microstructure and mechanical properties of 0.19C-1.7Si-1.0 Mn-0.05Nb steel was studied. The microstructure and mechanical properties of reheat quenched and tempered (RQ&T) steel plate were compared with those of direct quenched and tempered (DQ&T) steel plates which were hot rolled at different finish rolling tem-peratures (1173 K and 1123 K), i.e., recrystallization-controlled-rolled direct-quenched (RCR&DQ) and controlled-rolled direct-quenched (CR&DQ), respectively. The strengths generally increased in the following order: RQ&T<RCR&DQ&T< CR&DQ&T. Strength differences between the CR&DQ&T and RQ&T conditions as high as 14% were observed at the tempered temperature of 573 K. The optical microscopy of the CR&DQ&T steel showed deformed grains elongated along the rolling direction, while complete equiaxed grains were visible in RQ&T and RCR&DQ&T steels. Transmission electron microscopy (TEM) and electron backscattering diffraction (EBSD) of the DQ steels showed smaller block width and higher density of dislocations. Inheritance of austenite deformation substructure by the martensite and differences in martensite block width were ruled out as major causes for the strength differences between DQ and RQ steels.
文摘The microstructure and mechanical properties of cast inserted dies for automobile covering components were studied. The results show that the as-cast microstructures of cast inserted dies are composed of pearlite, martensite, bainite, and austenite; and that the annealed microstructure is granular pearlite. The mechanical properties of cast inserted dies approach that of forged inserted dies. The tensile strength is 855 MPa, the elongation is 16%, the impact toughness is 177 J/cm2, and the hardness after annealing and quenching are HRC 19 and HRC 60-62. In addition, the cast inserted dies have good hardenability. The depth of the hardening zone and the hardness after flame quenching satisfy the operating requirements. The cast inserted dies could completely replace the forged inserted dies for making the dies of automobile covering components.
文摘7075 aluminum alloy thick plates were produced by three processing routines: commercial hot rolling followed by heat treatment of quenching and ageing (HR+QA), combination of large deformation processing of multi directional warm forging and subsequent warm rolling followed by heat treatment of quenching and ageing (LD+QA), and that followed by annealing at moderate temperature (LD+AN). Tensile strength, yield strength and elongation were measured by tension test, and the metallographic structures were examined by optical microscopy (OM) and transmission electron microscopy (TEM), also the fracture morphologies were observed by scanning electron microscopy (SEM). It is shown that higher tensile strength and yield strength are obtained from (LD+QA) processing in comparison with those from (HR+QA) and (LD+AN) processings. Tensile strength and yield strength obtained from (LD+QA) processing are 9.9% and 8.6% higher respectively than those from (HR+QA) processing, and 48.6% and 57.7% higher respectively than those from (LD+AN) processing; while the elongations of all the samples show no significant difference and keep 10%12%. Analyses of OM and TEM reveal that the mechanical behaviors are deeply associated with the formation of refined structures with fine grains and very fine precipitates, leading to fine grained hardening and excellent age hardening.
基金financially supported by the National Key R&D Program of China (No. 2016YFB1100201)the Green Manufacturing System Integration Project of the Industry and Information Ministry of China (2017)the Research and development plan for the future emerging industries in Shenyang (18-004-2-26)
文摘This work aims to establish the effect of laser energy area density(EAD) as the laser incident energy on density, microstructures and mechanical properties of direct laser deposition(DLD) 12CrNi2 Y alloy steel.The results show that the density of DLD 12CrNi2 Y alloy steel increases at initial stage and then decreases with an increase of EAD, the highest density of alloy steel sample is 98.95%. The microstructures of DLD12CrNi2 Y alloy steel samples are composed of bainite, ferrite and carbide. With increase of EAD, the microstructures transform from polygonal ferrite(PF) to granular bainite(GB). The martensite-austenite constituent(M-A) in GB transforms from flake-like paralleling to the bainite ferrite laths to granular morphology. It is also found that the average width of laths in finer GB can be refined from 532 nm to 302 nm, which improves the comprehensive properties of DLD 12 CrNi2 Y alloy steel such as high hardness of 342 ± 9 HV_(0.2), yield strength of 702 ± 16 MPa, tensile strength of 901 ± 14 MPa and large elongation of15.2%±0.6%. The DLD 12CrNi2 Y material with good strength and toughness could meet the demand of alloy steel components manufacturing.
基金supported by National Key Research and Development Program(No.2017YFB1103701)National Natural Science Foundation of China(No.51671101)+1 种基金Natural Science Foundation of Jiangxi Province(No.20171BCD40003)the Innovative Funding for Graduate Students in Nanchang University(No.CX2019068)。
文摘In this work,ultrasonic micro-forging treatment(UMFT)was introduced to achieve homogeneous microstructure,reduce defects and improve mechanical properties of GH3039 superalloy cladding layer processed by directed energy deposition(DED).The microstructure,defects and mechanical properties of the cladding layers treated by UMFT with different ultrasonic powers(UIPs)were investigated.Results revealed a gradient structure as equiaxed grains distributed at the top,a columnar-to-equiaxed transition(CET)region that mixed of columnar dendrites and equiaxed grains distributed at the middle and columnar dendrites at the bottom of the cladding layer was formed.After UMFT,the proportion of equiaxed grains was increased,the average size of equiaxed grains was refined to 10μm from 16μm,the orientation of grains was more uniform and the phases enriched of Al,Ti,C,Nb and Mo were precipitated.The grain refinement can be attributed to the fracture of columnar dendrites induced by the ultrasonic vibration during solidification.Besides,the porosity of the cladding layer was reduced after UMFT.The microhardness of the cladding layers exhibited a depth-dependent gradient at the top region.The microhardness of the top surface was the highest and showed an increasing trend with the increase of UIP.The microhardness of different grain morphologies exhibited no substantial difference.However,due to grain refinement and precipitation of strengthening phase induced by UMFT,the microhadness of some local locations were improved.These results indicated UMFT has a significant effect on improving the microstructure,defects and mechanical properties of the deposited cladding layer.
基金Item Sponsored by Major Technology Program of Ministry of Industry and Information Technology of China(2009ZX04014-072-01)Technology Development Program of Jilin Province of China(20130102021JC)
文摘An experimental apparatus with cooling system and pressure-adjustment assembly for simulating quench- ing was constructed to investigate the effect of contact pressure on the microstructures and mechanical properties of hot stamping parts. Qualitative and quantitative analyses of the microstructures of the as quenched parts were con- ducted; moreover, hardness and tensile tests were performed to measure their mechanical properties. The results in- dicated that contact pressure during quenching strongly affected the structures and performances of hot-stamping components. An excessive low contact pressure led to insufficient martensitic transformation. The critical contact pressure for complete martensitic transformation for 4.0 mm 22MnB5 steel was 0.4 MPa when the temperature of the coolant was 20 ℃. However, in consideration of the efficiency of practical production, a contact pressure higher than 1.25 MPa is recommended.
基金This work was supported by the Heilongjiang Province Youth Skeleton Program(1252G018)Research Fund for the Doctoral Program of Higher Education(20132304110006)+3 种基金Project of Science and Technology of Heilongjiang Province Education Department(12511068)Fundamental Research Funds for the Central Universities(HEUCF20151006)Heilongjiang Province Natural Science Foundation(E201420)Harbin City Application Technology Research and Devolopment Project(2015AE005).
文摘Mg-5Li-1Al-0.5Y alloy was rolled with different directions.The microstructure,mechanical properties and texture of the specimens were investigated with optical microscope,tensile tester and X-ray diffraction.The results show that changing rolling directions can refine the grain size of as-rolled alloys.Meanwhile,rolling directions have an obvious influence on the mechanical properties and texture of Mg-5Li-1Al-0.5Y alloy,thus affecting the anisotropy of the alloy.The sheet,of which the RD(rolling direction)and ND(normal direction)are both changed between two passes,possesses the smallest anisotropy.From the texture results,changing rolling directions reduces the maximum pole density,making the highest point distribution region excursion and the highest point distributes more scatteredly.