期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Comparison of the Typical Metallogenic Systems in the North Slope of the Tongbai-East Qinling Mountains and its Geologic Implications 被引量:11
1
作者 ZHANG Jing CHEN Yanjing +1 位作者 QI Jinping GE Jun 《Acta Geologica Sinica(English Edition)》 SCIE CAS CSCD 2009年第2期396-410,共15页
The Tongbai-East Qinling Mountains, an important part of the Central orogenic belt, is one of the most important metallogenic belts in China and contains lots of orogenic-type and VMS-type (Volcanogenic Massive Sulfi... The Tongbai-East Qinling Mountains, an important part of the Central orogenic belt, is one of the most important metallogenic belts in China and contains lots of orogenic-type and VMS-type (Volcanogenic Massive Sulfide type) metallogenic systems. The Dahe and Shuidongling VMS-type Cu-Zn deposits, located in the Erlangping Group in Tongbai and East Qinling Mountains, respectively, show similar geological and geochemical features. The Huoshenmiao Formation in the East Qinling region and the Liushanyan Formation in the Tongbai region are spilite-keratophyre sequences occurring in the western and eastern sides of the Nanyang Basin, respectively, and are interpreted to be equivalent to each other. The orogenic-type Au-Ag deposits can be subdivided into two styles; namely, fault- or structure-controlled (e.g. Yindonggou) and stratabound (e.g. Poshan). The Poshan and Yindongpo orogenic-type Au-Ag deposits, whose ore bodies are strictly hosted in carbonaceous strata in the Tongbai Mountains, show obvious stratabound characteristics. Their ore-fluids are enriched in K^+ and SO^2-4 and are regarded as K^+-SO^2-4 types. The Pb-isotope ratios of sulfides of the ores are extremely uniform and significantly different from those of the tectonostratigraphic terranes of the Qinling orogens except for the ore-hosting strata of the Waitoushan Formation. The Yindonggou and Xuyaogou orogenic Au-Ag deposits in the East Qinling Mountains, whose ore bodies are hosted in the faults cutting the hosting strata or granite body, show fault-controlled characteristics. Their ore-fluids belong to the Na^+-Cl^- type. The Pb-isotope ratios of sulfides of ores are similar to those of the northern Qinling orogenic belt. The Waitoushan Formation, dominated by carbonaceous sericite-rich schists and only occurring in Tongbai region, should be detached from the Erlangping Group, which occurs both in the western and eastern sides of the Nanyang Basin. Future ore exploration in the Tongbai-East Qinling Mountains should focus on fault-controlled Au-Ag lodes. 展开更多
关键词 Erlangping Group orogenic-type deposit Tongbai-East Qinling Mountains VMS-typedeposit Waitoushan Formation
下载PDF
The multistage genesis of the giant Dongshengmiao Zn-Pb-Cu deposit in western Inner Mongolia,China:Syngenetic stratabound mineralization and metamorphic remobilization 被引量:3
2
作者 Richen Zhong Wenbo Li 《Geoscience Frontiers》 SCIE CAS CSCD 2016年第3期529-542,共14页
The genesis of the giant Dongshengmiao in the northern margin of the North China Block has been debated since its discovery in the 1950 s,because it shows geological and geochemical characteristics with both syngeneti... The genesis of the giant Dongshengmiao in the northern margin of the North China Block has been debated since its discovery in the 1950 s,because it shows geological and geochemical characteristics with both syngenetic and epigenetic signatures.It has geological settings and sulfur and lead isotopic compositions that are similar with typical SEDEX(sedimentary exhalative) deposit,while the Zn-Pb-Cu mineralization was controlled by shear deformation and metamorphism,showing similarities with orogenic-type deposits.In this contribution,both the syngenetic and epigenetic features of the Dongshengmiao are envisaged,and accounted for in the context of a genetic model with two metallogenic periods.Massive pyrite at the Dongshengmiao was mostly recrystallized during metamorphism,but finegrained texture was locally preserved,indicating its syngenetic origin.On the contrary,all the Zn-Pb-Cu ores observed in this study show characteristics of epigenetic hydrothermal mineralization that controlled by metamorphism and accompanying shear deformation.The sulfur and lead isotopic compositions of sphalerite and galena indicate that they were in situ remobilized from a syngenetic stratabound source,and the oxygen and hydrogen isotopic ratios of ore-fluid indicate that the large-scale remobilization was assisted by metamorphic fluid.The thermodynamic modeling indicates that the orefluid during remobilization has a great potential of transporting Cu.This may account for the abnormally enriched Cu in the remobilized SEDEX deposit.The metamorphic fluid might strip Cu from the fluid source during devolatilization,and overprint it on the Zn-Pb orebodies during remobilization.A secondary flowthrough modeling reveals that Zn- and Cu-sulfides would be preferentially redistributed in Fe-rich carbonates during remobilization,as a result of fluid-rock interaction.Conclusively,a multistage genetic model is proposed.During the development of the Proterozoic rift,stratabound Zn-Pb mineralization took place in a SEDEX ore-forming system.The syngenetic sulfides subsequently underwent a large-scale fluidassisted remobilization during the early Cretaceous metamorphism and thrusting,forming the shear zone-controlled epigenetic orebodies.During the remobilization process,Cu was scavenged from the source of metamorphic fluid,and deposited accompanying remobilized Zn-Pb sulfides.Shear structures and Fe-rich carbonates are ideal sites for redistribution and re-deposition of remobilized sulfide. 展开更多
关键词 SEDEX Zn-Pb-Cu Metamorphism REMOBILIZATION orogenic-type deposit
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部