[Objective] The aim was to research property of maca and three plants' powders and process parameters of compound maca direct compression. [Method] Based on analysis data from SAS, bulk density, tap density, angle of...[Objective] The aim was to research property of maca and three plants' powders and process parameters of compound maca direct compression. [Method] Based on analysis data from SAS, bulk density, tap density, angle of repose and swelling of powders were studied as per single factor method and orthogonal exper- imental design. [Result] The test indicated that fillibilities of plant A and B, and maca powders are better and flowability plays an important role in fractional close of compound maca powder; plant A and B powders have a significant effect on bulk density of maca (P=0.0125), an extremely significant effect on swelling volume ratio (P=0.008 9) and little effect on tap density (g/ml); the optimal process condition of compound maca powder is as follows: A at 0.15 share; B at 0.10 share; C at 0.05 share; the optimal swelling volume ratio is at 2.459. [Conclusion] The technology is reasonable in formulation and satisfactory in fillibility, swelling ability, flowability, and it could serve as theoretical basis for the industrial production of maca tablets.展开更多
基金Supported by Special Funds of National Technological and Basic Work(2006FY110700)Yunnan Province Improvement Project(2007C0219Z)Special Funds of Biological Industry of Yunnan Financial Development([2011]274)~~
文摘[Objective] The aim was to research property of maca and three plants' powders and process parameters of compound maca direct compression. [Method] Based on analysis data from SAS, bulk density, tap density, angle of repose and swelling of powders were studied as per single factor method and orthogonal exper- imental design. [Result] The test indicated that fillibilities of plant A and B, and maca powders are better and flowability plays an important role in fractional close of compound maca powder; plant A and B powders have a significant effect on bulk density of maca (P=0.0125), an extremely significant effect on swelling volume ratio (P=0.008 9) and little effect on tap density (g/ml); the optimal process condition of compound maca powder is as follows: A at 0.15 share; B at 0.10 share; C at 0.05 share; the optimal swelling volume ratio is at 2.459. [Conclusion] The technology is reasonable in formulation and satisfactory in fillibility, swelling ability, flowability, and it could serve as theoretical basis for the industrial production of maca tablets.