期刊文献+
共找到7篇文章
< 1 >
每页显示 20 50 100
Fatigue Performance of Orthotropic Steel Decks in Super-Wide Steel Box Girder Considering Transverse Distribution of Vehicle Load 被引量:2
1
作者 Xudong Wang Changqing Miao +1 位作者 Mao Yang Youliang Ding 《Structural Durability & Health Monitoring》 EI 2021年第4期299-316,共18页
This study presents an investigation on the fatigue analysis of four types of details on orthotropic steel decks(OSDs)for a cable-stayed super-wide steel box girder bridge based on finite-element analysis(FEA)with veh... This study presents an investigation on the fatigue analysis of four types of details on orthotropic steel decks(OSDs)for a cable-stayed super-wide steel box girder bridge based on finite-element analysis(FEA)with vehicle transverse distribution model(VTDM).A high-fidelity 3D FE model verified by the static load test is established to satisfy the fatigue analysis accuracy.The stress behavior of super-wide steel box girders under the vehicle load at different lane locations is investigated.Then,considering the effect of VTDM,the fatigue life analysis of four typical details is performed using the Miner cumulative damage rule.The results show that the vehicle transverse location has a great influence on the stress behavior of details with sharp influence surface,and the stress ranges in the outermost lane are larger than those in other lanes,indicating that the details of OSD in the outermost lane are prone to fatigue.The fatigue life analysis indicates that the diaphragm cutout is more prone to fatigue than other details,which should be carefully treated in bridge maintenance. 展开更多
关键词 orthotropic steel deck steel box girder fatigue life vehicle transverse distribution model finite element analysis
下载PDF
Influence of local geometric parameters on fatigue performance of orthotropic steel deck 被引量:1
2
作者 宋永生 丁幼亮 《Journal of Central South University》 SCIE EI CAS 2014年第5期2091-2099,共9页
Fatigue has become critical issue for bridge with orthotropic steel deck.Number of stress cycle and equivalent stress amplitude were adopted as two investigated fatigue effects.As presented from fatigue monitoring com... Fatigue has become critical issue for bridge with orthotropic steel deck.Number of stress cycle and equivalent stress amplitude were adopted as two investigated fatigue effects.As presented from fatigue monitoring comparison of two series-lined bridges,three local geometric parameters of steel box girder have significant influence on fatigue performance of two welded joints.They are thickness of longitudinal ribs(Tr),longitudinal spacing of transverse floor plate(Sc)and longitudinal truss(LT).Fatigue analytical models were created for parametric study of fatigue effects under wheel load.Consequently,three local parameters have exhibited insignificant influence on number of stress cycle.Compared with Tr and Sc,configuration of LT has brought about foremost effect on the equivalent stress amplitude.For equivalent stress amplitude of rib-to-deck and rib-to-rib welded joints,the influence regions of LT are respectively longitudinal strap and quadrate with the geometric length of 600 mm.Enough attention ought to be paid for local stiffen structure on fatigue performance of orthotropic steel deck in fatigue design and monitoring. 展开更多
关键词 fatigue effect orthotropic steel deck local detail structural health monitoring finite element analysis wheel load
下载PDF
Fatigue Performance Evaluation for Welded Details in Orthotropic Steel Deck Bridges Using Multi-Scale Finite Element Method
3
作者 Rongfeng Chen Changqing Miao 《Structural Durability & Health Monitoring》 EI 2020年第3期205-228,共24页
In order to study the fatigue properties of rib-to-deck welded connection and rib-to-rib welded connection in orthotropic steel bridge decks,a multi-scale finite element model was set up to analyze the stress distribu... In order to study the fatigue properties of rib-to-deck welded connection and rib-to-rib welded connection in orthotropic steel bridge decks,a multi-scale finite element model was set up to analyze the stress distribution characteristics and the load test was conducted on the Taizhou Yangtze River Bridge.Comparing the vehicle test results with the muli-scale finite element model results to verify the accuracy of the finite element simulation for the stress response of two welded details.The results indicated that The stress at the rib-to-deck welded connection and the rib-to-rib welded connection are the bending stress and the membrane stress,respectively;the stress response of the two welded connection has strong local characteristics;the lateral stress influence line of the two welded connection is relatively short and the length of the lateral stress influence line is greatly affected by the longitudinal ribs;increasing the thickness of the roof and longitudinal ribs can reduce the stress response and improve the stress performance of the heavy lanes.For the two welded details,the fatigue damage increment of the ordinary lane is greater than the heavy lane.The thickened roof and longitudinal ribs at the position of the heavy lane still cannot balance the fatigue damage caused by the heavy truck.Therefore,it is necessary to strictly control the fatigue effect of overloaded vehicles on steel box girders. 展开更多
关键词 orthotropic steel bridge decks welded details multi-scale finite element model load test
下载PDF
Finite element simulation and optimal analysis of surfacing on steel orthotropic bridge deck 被引量:2
4
作者 谭积青 徐伟 张肖宁 《Journal of Southeast University(English Edition)》 EI CAS 2006年第4期539-543,共5页
To analyze the stress state of steel orthotropic deck pavement and provide reference for the design of the overlay, the inner stress state and strain distribution of surfacing under the load of the deformation of the ... To analyze the stress state of steel orthotropic deck pavement and provide reference for the design of the overlay, the inner stress state and strain distribution of surfacing under the load of the deformation of the whole bridge structure and tyre load are analyzed by the finite element method of submodeling. Influence of surfacing modulus on the strain state of the overlay is analyzed for the purpose of the optimal design of the overlay structure. Analysis results show that the deformation of the whole bridge structure has no evident influence on the stress state of the overlay. The key factor of the overlay design is the transverse tensile strain in the overlay above the upper edge of web plate of rib. The stress state of the overlay is influenced evidently by the modulus of rigidity transform overlay. And the stress state of the overlay can be optimized and lowered by increasing the modulus and thickness of rigidity transform overlay, The fatigue test has been done to evaluate the fatigue performance and modulus of different deck pavement materials such as epoxy asphalt, SBS modified asphalt, rosphalt asphalt which can provide reference for deck pavement structure design. 展开更多
关键词 steel orthotropic deck bridge deck overlay finite element submodeling optimal analysis fatigue test
下载PDF
Effect of hot/warm roll-forming process on microstructural evolution and mechanical properties of local thickened U-rib for orthotropic steel deck 被引量:4
5
作者 Xue-feng Peng Jing Liu +1 位作者 Jing-tao Han Dong-bin Wei 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2017年第3期335-342,共8页
To improve the strength-toughness of traditional U-rib( TUR) and solve the problem of insufficient penetration between TUR and deckplate,a new local thickened U-rib( LTUR) has been proposed to improve the fatigue ... To improve the strength-toughness of traditional U-rib( TUR) and solve the problem of insufficient penetration between TUR and deckplate,a new local thickened U-rib( LTUR) has been proposed to improve the fatigue resistance of the weld joint under the premise of not increasing thickness and strength of the TUR material. And a hot /warm roll-forming process( RFP) adopting partially induction heating to 700- 1 000℃ was carried out to fabricate LTUR. The deformation behaviors in the forming process and microstructure of LTUR have been investigated.Mechanical properties and fracture mechanism of the LTUR after hot / warm RFP have been systematically discussed. Moreover,the results are compared with those obtained in cold RFP. Mechanical properties of the LTUR deformed above the critical transformation temperature( A_(c3)) show high performance characteristics with marked fatigue resistance and superior toughness. Upon increasing the heating temperature from 700 to 900 ℃,the initial coarse ferrite-pearlite structure transform into equiaxed ultrafine ferrite( 1- 3 μm) and precipitates such as( Nb,Ti)( C,N) are uniformly distributed in the matrix. The average dislocation density of the specimens after hot rollforming at heating temperature of 900 ℃ decreases dramatically compared with those of the specimens subjected to the cold RFP. Furthermore,a typical characteristic of ductile fracture mechanism and the high impact energy are more convinced that the specimens deformed above 900 ℃ have obtained an optimal combination of strength and toughness. 展开更多
关键词 orthotropic steel deck Local thickened U-rib Hot roll-forming PROCESS Warm roll-forming PROCESS Microstructural evolution Deformation behavior
原文传递
Fatigue Crack Propagation Analysis of Orthotropic Steel Bridge with Crack Tip Elastoplastic Consideration 被引量:2
6
作者 Ying Wang Zheng Yan Zhen Wang 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第5期549-574,共26页
Due to the complex structure and dense weld of the orthotropic steel bridge deck(OSBD),fatigue cracks are prone to occur in the typical welding details.Welding residual stress(WRS)will cause a plastic zone at the crac... Due to the complex structure and dense weld of the orthotropic steel bridge deck(OSBD),fatigue cracks are prone to occur in the typical welding details.Welding residual stress(WRS)will cause a plastic zone at the crack tip.In this paper,an elastoplastic constitutive model based on the Chaboche kinematic hardening model was introduced,and the extended finite element method(XFEM)was used to study the influence of material elastoplasticity and crack tip plastic zone on the law of fatigue crack propagation.By judging the stress state of the residual stress field at the crack tip and selecting different crack propagation rate models to investigate the crack propagation law when plastic deformation was considered,the propagation path and propagation rate of fatigue crack of the OSBD were obtained.The results show that,whether the residual stress field is considered or not,the plastic deformation at the crack tip will not cause the obvious closure of the fatigue crack at the U-rib toe during the crack propagation process,but will significantly affect the crack propagation path.When material plasticity is considered,the propagation angle of fatigue crack at the U-rib toe basically remains unchanged along the short-axis direction of the initial crack,but is going up along the long-axis direction,and the crack tip plastic zone inhibits the propagation of the crack tip on one side.Compared with linear elastic materials,the crack propagation law considering material plasticity is more consistent with that in actual bridge engineering.In terms of the propagation rate,if the residual stress field is not considered,the fatigue crack propagation rate at U-rib toe with plasticity considered is slightly higher than that without plasticity considered,because plastic deformation will affect the amplitude of energy release rate.When considering the WRS field,the fatigue crack propagation rate at U-rib toe is increased due to the combined actions of plastic deformation and stress ratio R. 展开更多
关键词 Extended finite element fatigue crack propagation orthotropic steel bridge deck welding residual stress plastic deformation
下载PDF
Research on an innovative structure of an open-ribbed steel-ultra-high performance concrete composite bridge deck
7
作者 Xudong SHAO Xuan SUN +2 位作者 Deqiang ZOU Junhui CAO Chuanqi YANG 《Frontiers of Structural and Civil Engineering》 SCIE EI CSCD 2024年第5期716-730,共15页
To completely solve the problem of fatigue cracking issue of orthotropic steel bridge decks(OSDs),the authors proposed a steel–ultra-high performance concrete(UHPC)lightweight composite deck(LWCD)with closed ribs in ... To completely solve the problem of fatigue cracking issue of orthotropic steel bridge decks(OSDs),the authors proposed a steel–ultra-high performance concrete(UHPC)lightweight composite deck(LWCD)with closed ribs in 2010.Based on the successful application of that LWCD,an adaptation incorporating an innovative composite deck structure,i.e.,the hot-rolled section steel–UHPC composite deck with open ribs(SSD)is proposed in this paper,aiming to simplify the fabrication process as well as to reduce the cost of LWCD.Based on a long-span cable-stayed bridge,a design scheme is proposed and is compared with the conventional OSD scheme.Further,a finite element(FE)calculation is conducted to reflect both the global and local behavior of the SSD scheme,and it is found that the peaked stresses in the SSD components are less than the corresponding allowable values.A static test is performed for an SSD strip specimen to understand the anti-cracking behavior of the UHPC layer under negative bending moments.The static test results indicate that the UHPC layer exhibited a satisfactory tensile toughness,the UHPC tensile strength obtained from the test is 1.8 times the calculated stress by the FE model of the real bridge.In addition,the fatigue stresses of typical fatigue-prone details in the SSD are calculated and evaluated,and the influences of key design parameters on the fatigue performance of the SSD are analyzed.According to the fatigue results,the peaked stress ranges for all of the 10 fatigue-prone details are within the corresponding constant amplitude fatigue limits.Then a fatigue test is carried out for another SSD strip specimen to explore the fatigue behavior of the fillet weld between the longitudinal and transverse ribs.The specimen failed at the fillet weld after equivalent 47.5 million cycles of loading under the design fatigue stress range,indicating that the fatigue performance of the SSD could meet the fatigue design requirement.Theoretical calculations and experiments provide a basis for the promotion and application of this structure in bridge engineering. 展开更多
关键词 steel-ultra-high performance concrete composite deck open rib strip model test static and fatigue performance orthotropic steel deck
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部