An experiment using rhizobox was conducted to study Si, Fe and Mn distributions in rice rhizosphcre of red earths and paddy soils. It was found that Si, Fe and Mn distributions in rhizosphere of the paddy soils were c...An experiment using rhizobox was conducted to study Si, Fe and Mn distributions in rice rhizosphcre of red earths and paddy soils. It was found that Si, Fe and Mn distributions in rhizosphere of the paddy soils were characterized by a depleted zone around root surface, beyond which the concentrations gradually rose. From lmm layer to 2mm layer the concentrations dropped and then rose again. Whereas Si and Fe in red earths showed no depleted zone but even accumulated zone around root surface. Mn showed an approximately even distribution in each layer and no depletion was found in root surface layers. This indicated that during rice (Oryza sativa L.)plantation, depletion and accumulation of Si, Fe and Mn in rhizosphere were important features of matured red earths by water culture. The distribution changes of Si, Fe and Mn in relation to soil-root interaction are also discussed.展开更多
Floods have now become most detrimental natural catastrophe worldwide due to radical climatic fluxes. Therefore, there is a dire necessity to develop a high yielding rice lines to deal with this scenario. For this pur...Floods have now become most detrimental natural catastrophe worldwide due to radical climatic fluxes. Therefore, there is a dire necessity to develop a high yielding rice lines to deal with this scenario. For this purpose, a large scale experiment was conducted including one hundred and fifteen (115) rice genotypes having SUB1 gene imported from International Rice Research Institute (IRRI) Philippines, six local cultivars/approved varieties and three high yielding rice varieties i.e. Sabitri, IR6 and NSICRC222 being used as potential varieties in different countries of Asia as susceptible check and IR64-SUB1 as tolerant check. The genotypic screening was performed using two PCR-based DNA markers i.e. ART5 and SC3. Phenotypic screening was conducted in a natural pond to assess the interaction of SUB1 gene in natural stagnant flood water as well as the suitability of introgression of SUB1 gene into approved varieties and elite rice lines. The genotypes were assessed in terms of plant survival percentage, submergence tolerance index, physical condition, stem elongation, number of grains per panicle, thousand grain weight, grain yields and deviations in these traits after submergence stress. The PCR results suggested that both the primers ART5 and SC3 may be used as potential PCR-based markers for molecular screening of rice genotypes for SUB1 QTL. Furthermore, it confirmed the presence of SUB1 gene in all the lines imported from IRRI, while it was absent in all the local cultivars studied. All the genotypes with submergence tolerant gene (SUB1) showed significantly greater tolerance level in submergence stress of 14 days, as compared to other local cultivars/varieties, authenticating the effectiveness of SUB1QTL in conferring submergence tolerance. Significantly different performances of all the SUB1 genotypes in terms of all the studied traits indicate high Genotypic and Genotypic Environment Interaction (GEI) of SUB1QTL. Employment of SUB1 lines such as R105479:149-18, IR64-SUB1 and Rl05469:81-22-3 in breeding programs for developing flood tolerant rice varieties might further upsurge rice yields in flash flood areas. Correlation analysis revealed that plant survival percentage after submergence, reduced stem elongation during submergence and submergence tolerance index are very important traits for developing submergence tolerant lines.展开更多
With global warming, rice plants may be subjected to heat stress more regularly during the heatsensitive flowering stage, causing spikelet sterility and grain yield loss.Stigma exsertion is considered to increase poll...With global warming, rice plants may be subjected to heat stress more regularly during the heatsensitive flowering stage, causing spikelet sterility and grain yield loss.Stigma exsertion is considered to increase pollen reception and promote female reproductive success.The aim of this study was to investigate the role of stigma exsertion on spikelet fertility at high temperatures.Five rice cultivars(Liangyoupeijiu, Shanyou 63, Huanghuazhan, Nagina 22, and IR64) with differing degrees of stigma exsertion were cultivated and exposed to high temperature at anthesis.Heat-tolerant cultivars did not always show a high percentage of spikelets with exserted stigmas, and vice versa.Irrespective of the presence of more pollen grains on exserted stigmas, spikelets with exserted stigmas did not show greater spikelet fertility than spikelets with fewer exserted stigmas or hidden stigmas under heat stress.GA3 application augmented the percentage of spikelets with exserted stigmas;however, it did not increase spikelet fertility under heat stress.Spikelet fertility of whole panicles was negatively correlated with the percentage of spikelets with exserted stigmas, but positively with that with hidden stigmas.Viability of the hidden stigmas was less reduced than that of exserted stigmas under heat stress, suggesting that hidden stigmas have an advantage in maintaining viability.Heat stress delayed anther dehiscence and reduced the viabilities of both exserted stigmas and pollens, thereby causing low spikelet fertility.Together, these results suggest that high spikelet fertility does not depend on stigma exsertion and that enclosed stigma generally contributes to higher spikelet fertility and heat tolerance under high-temperature conditions during flowering in rice.展开更多
Red rice (Oryza sativa L.), a noxious weed in rice production, competes with cultivated rice for nutrients. Accumulation of more N in red rice than in cultivated rice may be due to a mechanism different from that of c...Red rice (Oryza sativa L.), a noxious weed in rice production, competes with cultivated rice for nutrients. Accumulation of more N in red rice than in cultivated rice may be due to a mechanism different from that of cultivated rice. To test this assumption, red rice and cultivated rice were grown in nutrient solution to compare their growth and physiological responses to N supply. Experimental design was a split-plot, where main plot factor was rice type (Stf-3, ‘Wells’);split-plot factor was N treatment [T1 (complete nutrient solution);T2 (–NH4NO3);T3 (+NH4NO3 for 24-h post-N deficiency);and T4 (+NH4NO3 for 48-h post-N deficiency)]. Nitrogen deficiency was defined as N sufficiency index (NSI) 4, Stf-3 showed higher increment in root length and surface area than Wells. Shoot tissue concentrations of N and total sugars were measured to determine physiological response in N-deficient and N-supplemented plants. Stf-3 had greater N and sucrose tissue concentrations at N-deficient conditions compared with Wells, implying a stress-adaptive molecular mechanism regulated by N and sucrose availability.展开更多
Grain size is a major determinant of grain weight, which is one of the components of rice yield. The objective o this study was to identify novel, and important quantitative trait loci(QTLs) for grain size and weight ...Grain size is a major determinant of grain weight, which is one of the components of rice yield. The objective o this study was to identify novel, and important quantitative trait loci(QTLs) for grain size and weight in rice. QTLs were mapped using a BC4F4 population including 192 backcross inbred lines(BILs) derived from a backcross between Xiaolijing(XLJ) and recombinant inbred lines(RILs). The mapping population was planted in both Lingshui(Hainan, 2015) and Fuyang(Zhejiang, 2016), with the short-and long-day conditions, respectively. A total of 10 QTLs for grain length, four for grain width, four for the ratio of grain length to width, and 11 for grain weight were detected in at least one environment and were distributed across 11 chromosomes. The phenotypic variance explained ranged from 6.76–25.68%, 14.30–34.03%, 5.28–26.50%, and 3.01–22.87% for grain length, grain width, the ratio of grain length to width, and thousand grain weight, respectively. Using the sequential residual heterozygotes(SeqRHs) method, qGS7.1, a QTL for grain size and weight, was mapped in a 3.2-Mb interval on chromosome 7. No QTLs about grain size and weight were reported in previous studies in this region, providing a good candidate for functional analysis and breeding utilization.展开更多
Rice is food for more than half of the world population and the most consumable cereal in most of the countries. Pakistan is the fifth largest exporter of rice. However, Bacterial leaf blight (BLB) caused by Xanthomon...Rice is food for more than half of the world population and the most consumable cereal in most of the countries. Pakistan is the fifth largest exporter of rice. However, Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae is the most devastating and serious threat to rice production in many countries of the world including Pakistan. To combat this disease, innate genetic resistance of the plant plays vital role along with being environmentally friendly and economical. In this study, thirty-one (31) Near Isogenic Lines (NILs) having Xa4, xa5, Xa7, xa13 and Xa21 reported BLB tolerant genes and 34 locally developed rice lines were investigated under natural field conditions at three agro-ecologically different locations with highest disease occurrence records (BLB hotspots) viz., Sheikhupura, Hafizabad and Gujranwala, Punjab, Pakistan in order to assess their respective genetic resistance and G × E interactions against the disease. Thirty-one (31) lines were categorized under resistant cluster, twenty-eight (28) were moderately resistant, six (6) were moderately susceptible and one (susceptible check) was in susceptible category. Grouping of different lines/varieties under same cluster shows their significantly similar response against BLB disease in corresponding environment. Among the studied NILs, only one line showed polymorphism for all five resistant genes, two lines had four;seven lines had three genes, seven lines showed di-genic while five lines showed mono-genic polymorphism. These resistant lines with multiple-genes for BLB resistance can be evolved as a new BLB resistant variety and also be utilized as donor parent in breeding programs for developing new cultivars with horizontal resistance against more than one target pathotypes and environments. Xa4 and xa13 were found to deliver significant resistance against the local pathotypes in studied germplasm and NILs.展开更多
Leaf rolling and discoloration are two chilling-injury symptoms that are widely used as indicators for the evaluation of cold tolerance at the seedling stage in rice. However, the difference in cold-response mechanism...Leaf rolling and discoloration are two chilling-injury symptoms that are widely used as indicators for the evaluation of cold tolerance at the seedling stage in rice. However, the difference in cold-response mechanisms underlying these two traits remains unknown. In the present study, a cold-tolerant rice cultivar, Lijiangxintuanheigu, and a cold-sensitive cultivar, Sanhuangzhan-2, were subjected to low-temperature treatments and physiolog-ical and genome-wide gene expression analyses were conducted. Leaf rolling occurred at temperatures lower than 11℃, whereas discoloration appeared at moderately low temperatures such as 13℃. Chlorophyll contents in both cultivars were significantly decreased at 13℃, but not altered at 11℃. In contrast, the relative water content and relative electrolyte leakage of both cultivars decreased significantly at 11℃, but did not change at 13℃. Expression of genes associated with calcium signaling and abscisic acid (ABA) degradation was significantly altered at 11℃ in comparison with 25℃ and 13℃. Numerous genes in the DREB, MYB, bZIP, NAC, Zinc finger, bHLH, and WRKY gene families were differentially expressed. Many aquaporin genes and the key genes in trehalose and starch synthesis were down regulated at 11℃ in comparison with 25℃ and 13℃. These results suggest that the two chilling injury symptoms are temperature-specific and are controlled by different mechanisms. Cold-induced leaf rolling is associated with calcium and ABA signaling pathways and is regulated by multiple transcriptional regulators. The suppression of aquaporin genes and reduced accumulation of soluble sugars under cold stress results in a reduction in cellular water potential and consequently leaf rolling.展开更多
Grain weight is a key determinant of grain yield in rice. Three sets of rice populations with overlapping segregating regions in isogenic backgrounds were established in the generations of BC2 F5, BC2 F6 and BC2 F7, d...Grain weight is a key determinant of grain yield in rice. Three sets of rice populations with overlapping segregating regions in isogenic backgrounds were established in the generations of BC2 F5, BC2 F6 and BC2 F7, derived from Zhenshan 97 and Milyang 46, and used for dissection of quantitative trait loci(QTL) for grain weight. Two QTL linked in repulsion phase on the long arm of chromosome 1 were separated. One was located between simple sequence repeat(SSR) markers RM11437 and RM11615, having a smaller additive effect with the enhancing allele from the maintainer line Zhenshan 97 and a partially dominant effect for increasing grain weight. The other was located between SSR markers RM11615 and RM11800, having a larger additive effect with the enhancing allele from the restorer line Milyang 46 and a partially dominant effect for increasing grain weight. When the two QTL segregated simultaneously, a residual additive effect with the enhancing allele from Milyang 46 and an over-dominance effect for increasing grain weight were detected. This suggests that dominant QTL linked in repulsion phase might play an important role in heterosis in rice. Our study also indicates that the use of populations with overlapping segregating regions in isogenic backgrounds is helpful for the dissection of minor linked QTL.展开更多
Recently developed ‘super’ rice cultivars with greater yield potentials often suffer from the problem of poor grain filling, especially in inferior spikelets. Here, we studied the activities of enzymes related to st...Recently developed ‘super’ rice cultivars with greater yield potentials often suffer from the problem of poor grain filling, especially in inferior spikelets. Here, we studied the activities of enzymes related to starch metabolism in rice stems and grains, and the microstructures related to carbohydrate accumulation and transportation to investigate the effects of different water regimes on grain filling. Two ‘super’ rice cultivars were grown under two irrigation regimes of well-watered(WW) and alternate wetting and moderate soil drying(AWMD). Compared with the WW treatment,the activities of ADP glucose pyrophosphorylase(AGPase), starch synthase(StSase) and starch branching enzyme(SBE), and the accumulation of non-structural carbohydrates(NSCs) in the stems before heading were significantly improved, and more starch granules were stored in the stems in the AWMD treatment. After heading, the activities of α-amylase, β-amylase, sucrose phosphate synthase(SPS) and sucrose synthase in the synthetic direction(SSs)were increased in the stems to promote the remobilization of NSCs for grain filling under AWMD. During grain filling, the enzymatic activities of sucrose synthase in the cleavage direction(SSc), AGPase, StSase and SBE in the inferior spikelets were increased, which promoted grain filling, especially for the inferior spikelets under AWMD.However, there were no significant differences in vascular microstructures. The grain yield and grain weight could be improved by 13.1 and 7.5%, respectively, by optimizing of the irrigation regime. We concluded that the low activities of key enzymes in carbon metabolism is the key limitation for the poor grain filling, as opposed to the vascular microstructures, and AWMD can increase the amount of NSC accumulation in the stems before heading, improve the utilization rate of NSCs after heading, and increase the grain filling, especially in the inferior spikelets, by altering the activities of key enzymes in carbon metabolism.展开更多
Tillering is an important agronomic trait of rice(Oryza sativa)that affects the number of effective panicles,thereby affecting yields.The phytohormone auxin plays a key role in tillering.Here we identified the high ti...Tillering is an important agronomic trait of rice(Oryza sativa)that affects the number of effective panicles,thereby affecting yields.The phytohormone auxin plays a key role in tillering.Here we identified the high tillering and semi-dwarf 1(htsd1)mutant with auxin-deficiency root characteristics,such as shortened lateral roots,reduced lateral root density,and enlarged root angles.htsd1 showed reduced sensitivity to auxin,but the external application of indole-3-acetic acid(IAA)inhibited its tillering.We identified the mutated gene in htsd1 as AUXIN1(OsAUX1,LOC_Os01g63770),which encodes an auxin influx transporter.The promoter sequence of OsAUX1 contains many SQUAMOSA PROMOTER BINDING PROTEIN-LIKE(SPL)binding sites,and we demonstrated that SPL7 binds to the OsAUX1 promoter.TEOSINTE BRANCHED1(OsTB1),a key gene that negatively regulates tillering,was significantly downregulated in htsd1.Tillering was enhanced in the OsTB1 knockout mutant,and the external application of IAA inhibited tiller elongation in this mutant.Overexpressing OsTB1 restored the multi-tiller phenotype of htsd1.These results suggest that SPL7 directly binds to the OsAUX1 promoter and regulates tillering in rice by altering OsTB1 expression to modulate auxin signaling.展开更多
基于开放式臭氧浓度升高O_3-FACE(Free-Air Concentration Elevation of O_3)实验平台,利用前期水稻O_3-FACE试验的基础数据,通过建立水稻产量与不同评价指标(累积气孔O_3吸收通量PODY和O_3浓度指标AOTX)的响应关系,比较了水稻产量损失...基于开放式臭氧浓度升高O_3-FACE(Free-Air Concentration Elevation of O_3)实验平台,利用前期水稻O_3-FACE试验的基础数据,通过建立水稻产量与不同评价指标(累积气孔O_3吸收通量PODY和O_3浓度指标AOTX)的响应关系,比较了水稻产量损失与各评价指标的相关性差异,通过对暴露剂量、吸收通量相关参数取值与产量损失的观察和分析结果的比较,找出更为合理的农作物臭氧风险评估阈值。结果表明:随着通量阈值Y[0~11 nmol O_3·m^(-2)PLA·s^(-1)(PLA:projected leaf area,投影叶面积)]和暴露浓度阈值X(0~50 n L·L^(-1))的增加,回归分析R^2值逐渐增加,当Y为11 nmol O_3m^(-2)PLA·s^(-1)和X为50 n L·L^(-1)时,气孔臭氧吸收通量POD11和累积暴露剂量AOT50与水稻相对产量的相关性最大,当通量阈值Y为8~13 nmol O_3·m^(-2)PLA·s^(-1)和暴露阈值X为46~58 n L·L^(-1)时,可获得较高的R^2值取值范围,分别为0.70~0.75和0.70~0.745。参考文献发现,目前地表臭氧污染可能引起的水稻产量损失范围为5%~8%,对照圈中POD9~10和AOT40~45产量损失的预测值亦在这区间,但前者R^2值(0.73~0.74)明显高于后者R^2值(0.64~0.69),表明基于气孔臭氧通量的评价指标能更好地反映水稻产量的变化。通过进一步分析发现,当通量阈值Y为9 nmol O_3·m^(-2)PLA·s^(-1)时,能更准确地评估水稻产量损失,且其R^2值(0.73)高于通量指标POD6(0.57)。以上研究结果表明,通量指标POD9更适合评估亚热带地区O_3污染对水稻作物的影响。展开更多
基金Project supported by the National Natural Science Foundation of Chinathe Laboratory of Material Cycling in Pedosphere.Academia Sinica.
文摘An experiment using rhizobox was conducted to study Si, Fe and Mn distributions in rice rhizosphcre of red earths and paddy soils. It was found that Si, Fe and Mn distributions in rhizosphere of the paddy soils were characterized by a depleted zone around root surface, beyond which the concentrations gradually rose. From lmm layer to 2mm layer the concentrations dropped and then rose again. Whereas Si and Fe in red earths showed no depleted zone but even accumulated zone around root surface. Mn showed an approximately even distribution in each layer and no depletion was found in root surface layers. This indicated that during rice (Oryza sativa L.)plantation, depletion and accumulation of Si, Fe and Mn in rhizosphere were important features of matured red earths by water culture. The distribution changes of Si, Fe and Mn in relation to soil-root interaction are also discussed.
文摘Floods have now become most detrimental natural catastrophe worldwide due to radical climatic fluxes. Therefore, there is a dire necessity to develop a high yielding rice lines to deal with this scenario. For this purpose, a large scale experiment was conducted including one hundred and fifteen (115) rice genotypes having SUB1 gene imported from International Rice Research Institute (IRRI) Philippines, six local cultivars/approved varieties and three high yielding rice varieties i.e. Sabitri, IR6 and NSICRC222 being used as potential varieties in different countries of Asia as susceptible check and IR64-SUB1 as tolerant check. The genotypic screening was performed using two PCR-based DNA markers i.e. ART5 and SC3. Phenotypic screening was conducted in a natural pond to assess the interaction of SUB1 gene in natural stagnant flood water as well as the suitability of introgression of SUB1 gene into approved varieties and elite rice lines. The genotypes were assessed in terms of plant survival percentage, submergence tolerance index, physical condition, stem elongation, number of grains per panicle, thousand grain weight, grain yields and deviations in these traits after submergence stress. The PCR results suggested that both the primers ART5 and SC3 may be used as potential PCR-based markers for molecular screening of rice genotypes for SUB1 QTL. Furthermore, it confirmed the presence of SUB1 gene in all the lines imported from IRRI, while it was absent in all the local cultivars studied. All the genotypes with submergence tolerant gene (SUB1) showed significantly greater tolerance level in submergence stress of 14 days, as compared to other local cultivars/varieties, authenticating the effectiveness of SUB1QTL in conferring submergence tolerance. Significantly different performances of all the SUB1 genotypes in terms of all the studied traits indicate high Genotypic and Genotypic Environment Interaction (GEI) of SUB1QTL. Employment of SUB1 lines such as R105479:149-18, IR64-SUB1 and Rl05469:81-22-3 in breeding programs for developing flood tolerant rice varieties might further upsurge rice yields in flash flood areas. Correlation analysis revealed that plant survival percentage after submergence, reduced stem elongation during submergence and submergence tolerance index are very important traits for developing submergence tolerant lines.
基金supported by the National Natural Science Foundation of China (30971707, 31361140368)the National Key Research and Development Program of China (2017YFD0300100)+2 种基金the Natural Science Foundation of Jiangsu Province (BK20180537)the China Postdoctoral Science Foundation (2017M621757)the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘With global warming, rice plants may be subjected to heat stress more regularly during the heatsensitive flowering stage, causing spikelet sterility and grain yield loss.Stigma exsertion is considered to increase pollen reception and promote female reproductive success.The aim of this study was to investigate the role of stigma exsertion on spikelet fertility at high temperatures.Five rice cultivars(Liangyoupeijiu, Shanyou 63, Huanghuazhan, Nagina 22, and IR64) with differing degrees of stigma exsertion were cultivated and exposed to high temperature at anthesis.Heat-tolerant cultivars did not always show a high percentage of spikelets with exserted stigmas, and vice versa.Irrespective of the presence of more pollen grains on exserted stigmas, spikelets with exserted stigmas did not show greater spikelet fertility than spikelets with fewer exserted stigmas or hidden stigmas under heat stress.GA3 application augmented the percentage of spikelets with exserted stigmas;however, it did not increase spikelet fertility under heat stress.Spikelet fertility of whole panicles was negatively correlated with the percentage of spikelets with exserted stigmas, but positively with that with hidden stigmas.Viability of the hidden stigmas was less reduced than that of exserted stigmas under heat stress, suggesting that hidden stigmas have an advantage in maintaining viability.Heat stress delayed anther dehiscence and reduced the viabilities of both exserted stigmas and pollens, thereby causing low spikelet fertility.Together, these results suggest that high spikelet fertility does not depend on stigma exsertion and that enclosed stigma generally contributes to higher spikelet fertility and heat tolerance under high-temperature conditions during flowering in rice.
文摘Red rice (Oryza sativa L.), a noxious weed in rice production, competes with cultivated rice for nutrients. Accumulation of more N in red rice than in cultivated rice may be due to a mechanism different from that of cultivated rice. To test this assumption, red rice and cultivated rice were grown in nutrient solution to compare their growth and physiological responses to N supply. Experimental design was a split-plot, where main plot factor was rice type (Stf-3, ‘Wells’);split-plot factor was N treatment [T1 (complete nutrient solution);T2 (–NH4NO3);T3 (+NH4NO3 for 24-h post-N deficiency);and T4 (+NH4NO3 for 48-h post-N deficiency)]. Nitrogen deficiency was defined as N sufficiency index (NSI) 4, Stf-3 showed higher increment in root length and surface area than Wells. Shoot tissue concentrations of N and total sugars were measured to determine physiological response in N-deficient and N-supplemented plants. Stf-3 had greater N and sucrose tissue concentrations at N-deficient conditions compared with Wells, implying a stress-adaptive molecular mechanism regulated by N and sucrose availability.
基金supported by grants from the National Key Research and Development Program of China (2018YFD0100806)the Zhejiang Provincial Natural Science Foundation of China (LY18C130008)+2 种基金the National Natural Science Foundation of China (31521064)the Major Project of the Genetically Modified and National Key Transgenic Research Projects, China (2016ZX08001-002)the Super Rice Breeding Innovation Team and Rice Heterosis Mechanism Research Innovation Team of the Chinese Academy of Agricultural Sciences Innovation Project (CAASASTIP-2013-CNRRI)
文摘Grain size is a major determinant of grain weight, which is one of the components of rice yield. The objective o this study was to identify novel, and important quantitative trait loci(QTLs) for grain size and weight in rice. QTLs were mapped using a BC4F4 population including 192 backcross inbred lines(BILs) derived from a backcross between Xiaolijing(XLJ) and recombinant inbred lines(RILs). The mapping population was planted in both Lingshui(Hainan, 2015) and Fuyang(Zhejiang, 2016), with the short-and long-day conditions, respectively. A total of 10 QTLs for grain length, four for grain width, four for the ratio of grain length to width, and 11 for grain weight were detected in at least one environment and were distributed across 11 chromosomes. The phenotypic variance explained ranged from 6.76–25.68%, 14.30–34.03%, 5.28–26.50%, and 3.01–22.87% for grain length, grain width, the ratio of grain length to width, and thousand grain weight, respectively. Using the sequential residual heterozygotes(SeqRHs) method, qGS7.1, a QTL for grain size and weight, was mapped in a 3.2-Mb interval on chromosome 7. No QTLs about grain size and weight were reported in previous studies in this region, providing a good candidate for functional analysis and breeding utilization.
文摘Rice is food for more than half of the world population and the most consumable cereal in most of the countries. Pakistan is the fifth largest exporter of rice. However, Bacterial leaf blight (BLB) caused by Xanthomonas oryzae pv. oryzae is the most devastating and serious threat to rice production in many countries of the world including Pakistan. To combat this disease, innate genetic resistance of the plant plays vital role along with being environmentally friendly and economical. In this study, thirty-one (31) Near Isogenic Lines (NILs) having Xa4, xa5, Xa7, xa13 and Xa21 reported BLB tolerant genes and 34 locally developed rice lines were investigated under natural field conditions at three agro-ecologically different locations with highest disease occurrence records (BLB hotspots) viz., Sheikhupura, Hafizabad and Gujranwala, Punjab, Pakistan in order to assess their respective genetic resistance and G × E interactions against the disease. Thirty-one (31) lines were categorized under resistant cluster, twenty-eight (28) were moderately resistant, six (6) were moderately susceptible and one (susceptible check) was in susceptible category. Grouping of different lines/varieties under same cluster shows their significantly similar response against BLB disease in corresponding environment. Among the studied NILs, only one line showed polymorphism for all five resistant genes, two lines had four;seven lines had three genes, seven lines showed di-genic while five lines showed mono-genic polymorphism. These resistant lines with multiple-genes for BLB resistance can be evolved as a new BLB resistant variety and also be utilized as donor parent in breeding programs for developing new cultivars with horizontal resistance against more than one target pathotypes and environments. Xa4 and xa13 were found to deliver significant resistance against the local pathotypes in studied germplasm and NILs.
基金supported in part by the Ph.D. Start-up Fund of Natural Science Foundation of Guangdong Province, China (2015A030310419)the Guangdong Scientific and Technological Plan (2015B020231002, 2017A070702006, 2017A020208022)+3 种基金the Guangzhou Scientific and Technological Plan (201804020078)the Guangdong-Hong Kong joint project (2017A050506035)the Development Project of Guangdong Provincial Key Lab (2017B030314173)the Special Fund of Central Government Guided Local Scientific Development
文摘Leaf rolling and discoloration are two chilling-injury symptoms that are widely used as indicators for the evaluation of cold tolerance at the seedling stage in rice. However, the difference in cold-response mechanisms underlying these two traits remains unknown. In the present study, a cold-tolerant rice cultivar, Lijiangxintuanheigu, and a cold-sensitive cultivar, Sanhuangzhan-2, were subjected to low-temperature treatments and physiolog-ical and genome-wide gene expression analyses were conducted. Leaf rolling occurred at temperatures lower than 11℃, whereas discoloration appeared at moderately low temperatures such as 13℃. Chlorophyll contents in both cultivars were significantly decreased at 13℃, but not altered at 11℃. In contrast, the relative water content and relative electrolyte leakage of both cultivars decreased significantly at 11℃, but did not change at 13℃. Expression of genes associated with calcium signaling and abscisic acid (ABA) degradation was significantly altered at 11℃ in comparison with 25℃ and 13℃. Numerous genes in the DREB, MYB, bZIP, NAC, Zinc finger, bHLH, and WRKY gene families were differentially expressed. Many aquaporin genes and the key genes in trehalose and starch synthesis were down regulated at 11℃ in comparison with 25℃ and 13℃. These results suggest that the two chilling injury symptoms are temperature-specific and are controlled by different mechanisms. Cold-induced leaf rolling is associated with calcium and ABA signaling pathways and is regulated by multiple transcriptional regulators. The suppression of aquaporin genes and reduced accumulation of soluble sugars under cold stress results in a reduction in cellular water potential and consequently leaf rolling.
基金funded in part by the National High-Tech Research and Development Program (2012AA101102)the Chinese Highyielding Transgenic Program (2011ZX08001-004)the Research Funding of the China National Rice Research Institute (2012RG002-3)
文摘Grain weight is a key determinant of grain yield in rice. Three sets of rice populations with overlapping segregating regions in isogenic backgrounds were established in the generations of BC2 F5, BC2 F6 and BC2 F7, derived from Zhenshan 97 and Milyang 46, and used for dissection of quantitative trait loci(QTL) for grain weight. Two QTL linked in repulsion phase on the long arm of chromosome 1 were separated. One was located between simple sequence repeat(SSR) markers RM11437 and RM11615, having a smaller additive effect with the enhancing allele from the maintainer line Zhenshan 97 and a partially dominant effect for increasing grain weight. The other was located between SSR markers RM11615 and RM11800, having a larger additive effect with the enhancing allele from the restorer line Milyang 46 and a partially dominant effect for increasing grain weight. When the two QTL segregated simultaneously, a residual additive effect with the enhancing allele from Milyang 46 and an over-dominance effect for increasing grain weight were detected. This suggests that dominant QTL linked in repulsion phase might play an important role in heterosis in rice. Our study also indicates that the use of populations with overlapping segregating regions in isogenic backgrounds is helpful for the dissection of minor linked QTL.
基金This project was finically supported by the R&D Foundation of Jiangsu Province,China(BE2022425)the National Key Research and Development Program of China(2022YFD2300304)the Priority Academic Program Development of Jiangsu Higher-Education Institutions,China(PAPD).
文摘Recently developed ‘super’ rice cultivars with greater yield potentials often suffer from the problem of poor grain filling, especially in inferior spikelets. Here, we studied the activities of enzymes related to starch metabolism in rice stems and grains, and the microstructures related to carbohydrate accumulation and transportation to investigate the effects of different water regimes on grain filling. Two ‘super’ rice cultivars were grown under two irrigation regimes of well-watered(WW) and alternate wetting and moderate soil drying(AWMD). Compared with the WW treatment,the activities of ADP glucose pyrophosphorylase(AGPase), starch synthase(StSase) and starch branching enzyme(SBE), and the accumulation of non-structural carbohydrates(NSCs) in the stems before heading were significantly improved, and more starch granules were stored in the stems in the AWMD treatment. After heading, the activities of α-amylase, β-amylase, sucrose phosphate synthase(SPS) and sucrose synthase in the synthetic direction(SSs)were increased in the stems to promote the remobilization of NSCs for grain filling under AWMD. During grain filling, the enzymatic activities of sucrose synthase in the cleavage direction(SSc), AGPase, StSase and SBE in the inferior spikelets were increased, which promoted grain filling, especially for the inferior spikelets under AWMD.However, there were no significant differences in vascular microstructures. The grain yield and grain weight could be improved by 13.1 and 7.5%, respectively, by optimizing of the irrigation regime. We concluded that the low activities of key enzymes in carbon metabolism is the key limitation for the poor grain filling, as opposed to the vascular microstructures, and AWMD can increase the amount of NSC accumulation in the stems before heading, improve the utilization rate of NSCs after heading, and increase the grain filling, especially in the inferior spikelets, by altering the activities of key enzymes in carbon metabolism.
基金This work was supported by the National Key Research and Development Program of China(2022YFD1201600)the National Natural Science Foundation of China(32171964)the Science Fund for Creative Research Groups of Chongqing,China(cstc2021jcyj-cxttX0004)。
文摘Tillering is an important agronomic trait of rice(Oryza sativa)that affects the number of effective panicles,thereby affecting yields.The phytohormone auxin plays a key role in tillering.Here we identified the high tillering and semi-dwarf 1(htsd1)mutant with auxin-deficiency root characteristics,such as shortened lateral roots,reduced lateral root density,and enlarged root angles.htsd1 showed reduced sensitivity to auxin,but the external application of indole-3-acetic acid(IAA)inhibited its tillering.We identified the mutated gene in htsd1 as AUXIN1(OsAUX1,LOC_Os01g63770),which encodes an auxin influx transporter.The promoter sequence of OsAUX1 contains many SQUAMOSA PROMOTER BINDING PROTEIN-LIKE(SPL)binding sites,and we demonstrated that SPL7 binds to the OsAUX1 promoter.TEOSINTE BRANCHED1(OsTB1),a key gene that negatively regulates tillering,was significantly downregulated in htsd1.Tillering was enhanced in the OsTB1 knockout mutant,and the external application of IAA inhibited tiller elongation in this mutant.Overexpressing OsTB1 restored the multi-tiller phenotype of htsd1.These results suggest that SPL7 directly binds to the OsAUX1 promoter and regulates tillering in rice by altering OsTB1 expression to modulate auxin signaling.