Leaf inclination,a component of crop architecture,influences photosynthetic efficiency and planting density.Various factors,particularly the phytohormones auxin and brassinosteroids(BRs),function in regulating lamina ...Leaf inclination,a component of crop architecture,influences photosynthetic efficiency and planting density.Various factors,particularly the phytohormones auxin and brassinosteroids(BRs),function in regulating lamina joint bending,and understanding of the genetic control of leaf inclination will help to elucidate the relevant regulatory network.Screening a rice T-DNA insertion population revealed a mutant that was insensitive to auxin and displayed an enlarged leaf angle due to increased cell length on the adaxial side of the lamina joint.Genetic analysis revealed that the increased leaf inclination was caused by T-DNA insertion in the promoter region of OsIAA6,resulting in elevated OsIAA6 expression.Further study showed that OsIAA6 interacts with OsARF1 to suppress auxin signaling and regulates leaf inclination.OsIAA6 mediates the BR effects on lamina joint development,and OsBZR1,the key transcription factor in BR signaling,binds directly to the promoter of OsIAA6 to stimulate its transcription.These results indicate the roles of the OsIAA6-OsARF1 module in regulating rice leaf inclination and suggest the synergistic effects of the phytohormones auxin and BR.展开更多
Auxin is an important phytohormone in plants, and auxin signaling pathways in rice play key roles in regulating its growth, development, and productivity. To investigate how rice grain yield traits are regulated by au...Auxin is an important phytohormone in plants, and auxin signaling pathways in rice play key roles in regulating its growth, development, and productivity. To investigate how rice grain yield traits are regulated by auxin signaling pathways and to facilitate their application in rice improvement, we validated the functional relationships among regulatory genes such as OsIAA10, OsSK41, and OsARF21 that are involved in one of the auxin(OsIAA10) signaling pathways. We assessed the phenotypic effects of these genes on several grain yield traits across two environments using knockout and/or overexpression transgenic lines.Based on the results, we constructed a model that showed how grain yield traits were regulated by OsIAA10 and OsTIR1, OsAFB2, and OsSK41 and OsmiR393 in the OsSK41-OsIAA10-OsARF module and by OsARF21 in the transcriptional regulation of downstream auxin response genes in the OsSK41-OsIAA10-OsARF module. The population genomic analyses revealed rich genetic diversity and the presence of major functional alleles at most of these loci in rice populations. The strong differentiation of many major alleles between Xian/indica and Geng/japonica subspecies and/or among modern varieties and landraces suggested that they contributed to improved productivity during evolution and breeding. We identified several important aspects associated with the genetic and molecular bases of rice grain and yield traits that were regulated by auxin signaling pathways.We also suggested rice auxin response factor(OsARF) activators as candidate target genes for improving specific target traits by overexpression and/or editing subspecies-specific alleles and by searching and pyramiding the ‘best' gene allelic combinations at multiple regulatory genes in auxin signaling pathways in rice breeding programs.展开更多
Grain weight and quality are always determined by grain filling.Plant microRNAs have drawn attention as key targets for regulation of grain size and yield.However,the mechanisms that underlie grain size regulation rem...Grain weight and quality are always determined by grain filling.Plant microRNAs have drawn attention as key targets for regulation of grain size and yield.However,the mechanisms that underlie grain size regulation remain largely unclear because of the complex networks that control this trait.Our earlier studies demonstrated that suppressed expression of miR167(STTM/MIM167)substantially increased grain weight.In a field test,the yield increased up to 12.90%-21.94% because of a significantly enhanced grain filling rate.Here,biochemical and genetic analyses revealed the regulatory effects of miR159 on miR167 expression.Further analysis indicated that OsARF12 is the major mediator by which miR167 regulates rice grain filling.Overexpression of OsARF12 produced grain weight and grain filling phenotypes resembling those of STTM/MIM167 plants.Upon in-depth analysis,we found that OsARF12 activates OsCDKF;2 expression by directly binding to the TGTCGG motif in its promoter region.Flow cytometry analysis of young panicles from OsARF12-overexpressing plants and examination of cell number in cdkf;2 mutants verified that OsARF12 positively regulates grain filling and grain size by targeting OsCDKF;2.Moreover,RNA sequencing results suggested that the miR167-OsARF12 module is involved in the cell development process and hormone pathways.OsARF12-overexpressing plants and cdkf;2 mutants exhibited enhanced and reduced sensitivity to exogenous auxin and brassinosteroid(BR)treatment,confirming that targeting of OsCDKF;2 by OsARF12 mediates auxin and BR signaling.Our results reveal that the miR167-OsARF12 module works downstream of miR159 to regulate rice grain filling and grain size via OsCDKF;2 by controlling cell division and mediating auxin and BR signals.展开更多
Nitrate is an important nitrogen source and signaling molecule that regulates plant growth and development.Although several components of the nitrate signaling pathway have been identified,the detailed mechanisms are ...Nitrate is an important nitrogen source and signaling molecule that regulates plant growth and development.Although several components of the nitrate signaling pathway have been identified,the detailed mechanisms are still unclear.Our previous results showed that OsMADS25 can regulate root development in response to nitrate signals,but the mechanism is still unknown.Here,we try to answer two key questions:how does OsMADS25 move from the cytoplasm to the nucleus,and what are the direct target genes activated by OsMADS25 to regulate root growth after it moves to the nucleus in response to nitrate?Our results demonstrated that OsMADS25 moves from the cytoplasm to the nucleus in the presence of nitrate in an OsNAR2.1-dependentmanner.Chromatin immunoprecipitation sequencing,chromatin immunoprecipitation qPCR,yeast one-hybrid,and luciferase experiments showed that OsMADS25 directly activates the expression of OsMADS27 and OsARF7,which are reported to be associated with root growth.Finally,OsMADS25-RNAi lines,the Osnar2.1 mutant,and OsMADS25-RNAi Osnar2.1 lines exhibited significantly reduced root growth compared with the wild type in response to nitrate supply,and expression of OsMADS27 and OsARF7 was significantly suppressed in these lines.Collectively,these results reveal a new mechanismby which OsMADS25 interacts with OsNAR2.1.This interaction is required for nuclear accumulation of OsMADS25,which promotes OsMADS27 and OsARF7 expression and root growth in a nitratedependent manner.展开更多
Grain size and shape are important determinants of grain weight and yield in rice. Here, we report a new major quantitative trait locus (QTL), qTGW3, that controls grain size and weight in rice. This locus, qTGW3, e...Grain size and shape are important determinants of grain weight and yield in rice. Here, we report a new major quantitative trait locus (QTL), qTGW3, that controls grain size and weight in rice. This locus, qTGW3, encodes OsSK41 (also known as OsGSK5), a member of the GLYCOGEN SYNTHASE KINASE 3/SHAGGY-like family. Rice near-isogenic lines carrying the loss-of-function allele of OsSK41 have increased grain length and weight. We demonstrate that OsSK41 interacts with and phosphorylates AUXIN RESPONSE FACTOR 4 (OsARF4). Co-expression of OsSK41 with OsARF4 increases the accumulation of OsARF4 in rice protoplasts. Loss of function of OsARF4 results in larger rice grains. RNA-sequencing analysis suggests that OsARF4 and OsSK41 repress the expression of a common set of downstream genes, including some auxin-responsive genes, during rice grain development. The loss-of-function form of OsSK41 at qTGW3 represents a rare allele that has not been extensively utilized in rice breeding. Suppression of OsSK41 function by either targeted gene editing or QTL pyramiding enhances rice grain size and weight. Thus, our study reveals the important role of OsSK41 in rice grain development and provides new candidate genes for genetic improvement of grain yield in rice and perhaps in other cereal crops.展开更多
Grain size is one of the most important factors that control rice yield,as it is associated with grain weight(GW).To date,dozens of rice genes that regulate grain size have been isolated;however,the regulatory mechani...Grain size is one of the most important factors that control rice yield,as it is associated with grain weight(GW).To date,dozens of rice genes that regulate grain size have been isolated;however,the regulatory mechanism underlying GW control is not fully understood.Here,the quantitative trait locus qGL5 for grain length(GL)and GW was identified in recombinant inbred lines of 9311 and Nipponbare(NPB)and fine mapped to a candidate gene,OsAUX3.Sequence variations between 9311 and NPB in the OsAUX3 promoter and loss of function of OsAUX3 led to higher GL and GW.RNA sequencing,gene expression quantification,dual-luciferase reporter assays,chromatin immunoprecipitation-quantitative PCR,and yeast one-hybrid assays demonstrated that OsARF6 is an upstream transcription factor regulating the expression of OsAUX3.OsARF6 binds directly to the auxin response elements of the OsAUX3 promoter,covering a single-nucleotide polymorphism site between 9311 and NPB/Dongjin/Hwayoung,and thereby controls GL by altering longitudinal expansion and auxin distribution/content in glume cells.Furthermore,we showed that miR167a positively regulate GL and GW by directing OsARF6 mRNA silencing.Taken together,our study reveals that a novel miR167a-OsARF6-OsAUX3 module regulates GL and GW in rice,providing a potential target for the improvement of rice yield.展开更多
文摘Leaf inclination,a component of crop architecture,influences photosynthetic efficiency and planting density.Various factors,particularly the phytohormones auxin and brassinosteroids(BRs),function in regulating lamina joint bending,and understanding of the genetic control of leaf inclination will help to elucidate the relevant regulatory network.Screening a rice T-DNA insertion population revealed a mutant that was insensitive to auxin and displayed an enlarged leaf angle due to increased cell length on the adaxial side of the lamina joint.Genetic analysis revealed that the increased leaf inclination was caused by T-DNA insertion in the promoter region of OsIAA6,resulting in elevated OsIAA6 expression.Further study showed that OsIAA6 interacts with OsARF1 to suppress auxin signaling and regulates leaf inclination.OsIAA6 mediates the BR effects on lamina joint development,and OsBZR1,the key transcription factor in BR signaling,binds directly to the promoter of OsIAA6 to stimulate its transcription.These results indicate the roles of the OsIAA6-OsARF1 module in regulating rice leaf inclination and suggest the synergistic effects of the phytohormones auxin and BR.
基金supported by the Innovation Program of Shanghai Municipal Education Commission (2023ZKZD05)the National Natural Science Foundation of China (31971918, U21A20214)the Shanghai Science and Technology Innovation Action Plan Project (22N11900200)。
文摘Auxin is an important phytohormone in plants, and auxin signaling pathways in rice play key roles in regulating its growth, development, and productivity. To investigate how rice grain yield traits are regulated by auxin signaling pathways and to facilitate their application in rice improvement, we validated the functional relationships among regulatory genes such as OsIAA10, OsSK41, and OsARF21 that are involved in one of the auxin(OsIAA10) signaling pathways. We assessed the phenotypic effects of these genes on several grain yield traits across two environments using knockout and/or overexpression transgenic lines.Based on the results, we constructed a model that showed how grain yield traits were regulated by OsIAA10 and OsTIR1, OsAFB2, and OsSK41 and OsmiR393 in the OsSK41-OsIAA10-OsARF module and by OsARF21 in the transcriptional regulation of downstream auxin response genes in the OsSK41-OsIAA10-OsARF module. The population genomic analyses revealed rich genetic diversity and the presence of major functional alleles at most of these loci in rice populations. The strong differentiation of many major alleles between Xian/indica and Geng/japonica subspecies and/or among modern varieties and landraces suggested that they contributed to improved productivity during evolution and breeding. We identified several important aspects associated with the genetic and molecular bases of rice grain and yield traits that were regulated by auxin signaling pathways.We also suggested rice auxin response factor(OsARF) activators as candidate target genes for improving specific target traits by overexpression and/or editing subspecies-specific alleles and by searching and pyramiding the ‘best' gene allelic combinations at multiple regulatory genes in auxin signaling pathways in rice breeding programs.
基金funded by the National Natural Science Foundation of China(NSFC,32272014,32001440,31971846,and 31871554)the Natural Science Foundation of Henan Province-Excellent Youth Fund(222300420049)+2 种基金the Central Plains Talents Program of Henan Province(Talent Training Series)-Top Young Talents in Central Plains(ZYY-CYU202012170)the Support Plan for Scientific and Technological Innovation Talents in Colleges and Universities of Henan Province(21HAS-TIT037)the China Postdoctoral Science Foundation(2020M682294).
文摘Grain weight and quality are always determined by grain filling.Plant microRNAs have drawn attention as key targets for regulation of grain size and yield.However,the mechanisms that underlie grain size regulation remain largely unclear because of the complex networks that control this trait.Our earlier studies demonstrated that suppressed expression of miR167(STTM/MIM167)substantially increased grain weight.In a field test,the yield increased up to 12.90%-21.94% because of a significantly enhanced grain filling rate.Here,biochemical and genetic analyses revealed the regulatory effects of miR159 on miR167 expression.Further analysis indicated that OsARF12 is the major mediator by which miR167 regulates rice grain filling.Overexpression of OsARF12 produced grain weight and grain filling phenotypes resembling those of STTM/MIM167 plants.Upon in-depth analysis,we found that OsARF12 activates OsCDKF;2 expression by directly binding to the TGTCGG motif in its promoter region.Flow cytometry analysis of young panicles from OsARF12-overexpressing plants and examination of cell number in cdkf;2 mutants verified that OsARF12 positively regulates grain filling and grain size by targeting OsCDKF;2.Moreover,RNA sequencing results suggested that the miR167-OsARF12 module is involved in the cell development process and hormone pathways.OsARF12-overexpressing plants and cdkf;2 mutants exhibited enhanced and reduced sensitivity to exogenous auxin and brassinosteroid(BR)treatment,confirming that targeting of OsCDKF;2 by OsARF12 mediates auxin and BR signaling.Our results reveal that the miR167-OsARF12 module works downstream of miR159 to regulate rice grain filling and grain size via OsCDKF;2 by controlling cell division and mediating auxin and BR signals.
基金funded by the National Key Research and Development Program of China(2021YFF1000400)the Zhejiang Provincial Natural Science Foundation of China(grant no.LZ22C130002)the National Natural Science Foundation of China(grant no.U2202204).
文摘Nitrate is an important nitrogen source and signaling molecule that regulates plant growth and development.Although several components of the nitrate signaling pathway have been identified,the detailed mechanisms are still unclear.Our previous results showed that OsMADS25 can regulate root development in response to nitrate signals,but the mechanism is still unknown.Here,we try to answer two key questions:how does OsMADS25 move from the cytoplasm to the nucleus,and what are the direct target genes activated by OsMADS25 to regulate root growth after it moves to the nucleus in response to nitrate?Our results demonstrated that OsMADS25 moves from the cytoplasm to the nucleus in the presence of nitrate in an OsNAR2.1-dependentmanner.Chromatin immunoprecipitation sequencing,chromatin immunoprecipitation qPCR,yeast one-hybrid,and luciferase experiments showed that OsMADS25 directly activates the expression of OsMADS27 and OsARF7,which are reported to be associated with root growth.Finally,OsMADS25-RNAi lines,the Osnar2.1 mutant,and OsMADS25-RNAi Osnar2.1 lines exhibited significantly reduced root growth compared with the wild type in response to nitrate supply,and expression of OsMADS27 and OsARF7 was significantly suppressed in these lines.Collectively,these results reveal a new mechanismby which OsMADS25 interacts with OsNAR2.1.This interaction is required for nuclear accumulation of OsMADS25,which promotes OsMADS27 and OsARF7 expression and root growth in a nitratedependent manner.
基金This work was financially supported by grants from the National Key Research and Development Program of China (2016YFD0100902), the National Natural Science Foundation of China (numbers 31400223, 31471461, and 31625004), the Basic Research Program from the Shanghai Municipal Science and Technology Commission (14JC1400800), the Basic Application Research Program from the Shanghai Municipal Agriculture Commission (2014-7-1-2), and the Agricultural Seed Project of Shandong Province.
文摘Grain size and shape are important determinants of grain weight and yield in rice. Here, we report a new major quantitative trait locus (QTL), qTGW3, that controls grain size and weight in rice. This locus, qTGW3, encodes OsSK41 (also known as OsGSK5), a member of the GLYCOGEN SYNTHASE KINASE 3/SHAGGY-like family. Rice near-isogenic lines carrying the loss-of-function allele of OsSK41 have increased grain length and weight. We demonstrate that OsSK41 interacts with and phosphorylates AUXIN RESPONSE FACTOR 4 (OsARF4). Co-expression of OsSK41 with OsARF4 increases the accumulation of OsARF4 in rice protoplasts. Loss of function of OsARF4 results in larger rice grains. RNA-sequencing analysis suggests that OsARF4 and OsSK41 repress the expression of a common set of downstream genes, including some auxin-responsive genes, during rice grain development. The loss-of-function form of OsSK41 at qTGW3 represents a rare allele that has not been extensively utilized in rice breeding. Suppression of OsSK41 function by either targeted gene editing or QTL pyramiding enhances rice grain size and weight. Thus, our study reveals the important role of OsSK41 in rice grain development and provides new candidate genes for genetic improvement of grain yield in rice and perhaps in other cereal crops.
基金This project was funded by grants from the National Key Research and Development Program of China(2016YFD0100400)the National Natural Science Foundation of China(32060451)the Zhejiang Provincial Nat-ural Science Foundation of China(grant no.L Z19C020001).
文摘Grain size is one of the most important factors that control rice yield,as it is associated with grain weight(GW).To date,dozens of rice genes that regulate grain size have been isolated;however,the regulatory mechanism underlying GW control is not fully understood.Here,the quantitative trait locus qGL5 for grain length(GL)and GW was identified in recombinant inbred lines of 9311 and Nipponbare(NPB)and fine mapped to a candidate gene,OsAUX3.Sequence variations between 9311 and NPB in the OsAUX3 promoter and loss of function of OsAUX3 led to higher GL and GW.RNA sequencing,gene expression quantification,dual-luciferase reporter assays,chromatin immunoprecipitation-quantitative PCR,and yeast one-hybrid assays demonstrated that OsARF6 is an upstream transcription factor regulating the expression of OsAUX3.OsARF6 binds directly to the auxin response elements of the OsAUX3 promoter,covering a single-nucleotide polymorphism site between 9311 and NPB/Dongjin/Hwayoung,and thereby controls GL by altering longitudinal expansion and auxin distribution/content in glume cells.Furthermore,we showed that miR167a positively regulate GL and GW by directing OsARF6 mRNA silencing.Taken together,our study reveals that a novel miR167a-OsARF6-OsAUX3 module regulates GL and GW in rice,providing a potential target for the improvement of rice yield.