期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
OsPDR在酵母中异源表达增强了酵母对钴的耐受性(英文)
1
作者 田思琪 乔坤 +3 位作者 王凡红 梁爽 王红 柴团耀 《生物化学与生物物理进展》 SCIE CAS CSCD 北大核心 2018年第12期1259-1267,共9页
在通过RNA-Seq技术得到的镉响应转录组图谱中,用50μmol/L Cd处理24 h后,一个镉响应金属离子转运蛋白OsPDR被鉴定出其在水稻(Oryza sativa ssp. japonica cv. Nipponbare)茎中的表达量显著上调.本研究中,从水稻(Oryza sativa cv.Nipponb... 在通过RNA-Seq技术得到的镉响应转录组图谱中,用50μmol/L Cd处理24 h后,一个镉响应金属离子转运蛋白OsPDR被鉴定出其在水稻(Oryza sativa ssp. japonica cv. Nipponbare)茎中的表达量显著上调.本研究中,从水稻(Oryza sativa cv.Nipponbare)中分离了OsPDR基因,并对其金属离子转移活性进行了分析.金属耐受性实验结果表明,过表达OsPDR能提高酵母对Co的耐受性,但对Zn、Ni和Cd的耐受性不强,并且经电感耦合等离子体质谱法(ICP-MS)测定Co含量后,与空载体转化酵母相比,过表达OsPDR的酵母中Co的积累更高.利用共聚焦显微镜观察发现,EGFP-OsP DR融合蛋白定位于液泡膜上.这些数据表明OsP DR可能在Co稳态中起着重要作用.OsPDR在植物中的作用,还需要进一步的研究. 展开更多
关键词 ospdr 转运 酵母
下载PDF
Knocking-Out OsPDR7 Triggers Up-Regulation of OsZIP9 Expression and Enhances Zinc Accumulation in Rice
2
作者 MENG Lu TANG Mingfeng +1 位作者 ZHU Yuxing TAN Longtao 《Rice science》 SCIE CSCD 2023年第1期36-49,共14页
Zinc(Zn) is an essential trace mineral that is required for plant growth and development. A number of protein transporters, which are involved in Zn uptake, translocation and distribution, are finely regulated to main... Zinc(Zn) is an essential trace mineral that is required for plant growth and development. A number of protein transporters, which are involved in Zn uptake, translocation and distribution, are finely regulated to maintain Zn homeostasis in plant. In this study, we functionally characterized an ATP-binding cassette(ABC) transporter gene, OsPDR7, which is involved in Zn homeostasis. Os PDR7 encodes a plasma membrane-localized protein that is expressed mainly in the exodermis and xylem in the rice root.ospdr7 mutants resulted in higher Zn accumulation compared with the wild type. Heterogeneous expression of OsPDR7 in a yeast mutant rescued the Zn-deficiency phenotype, implying transport activity of OsPDR7 to Zn in yeast. However, no ZIP genes except for OsZIP9 showed change in expression profile in the ospdr7 mutants, which suggested that OsPDR7 maintains cellular Zn homeostasis through regulating Os ZIP9 expression. RNA-Seq analysis further revealed a set of differentially expressed genes between the wild type and ospdr7 mutants that allowed us to propose a possible OsPDR7-associated signaling network involving transporters, hormone responsive genes, and transcription factors. Our results revealed a novel transporter involved in the regulation of Zn homeostasis and will pave the way toward a better understanding of the fine-tuning of gene expression in the network of transporter genes. 展开更多
关键词 ospdr7 OsZIP9 ZINC metal accumulation RICE ATP-binding cassette transporter
下载PDF
A Pleiotropic Drug Resistance Family Protein Gene Is Required for Rice Growth, Seed Development and Zinc Homeostasis
3
作者 LI Chao LI He +1 位作者 ZHANG Xianduo YANG Zhimin 《Rice science》 SCIE CSCD 2023年第2期127-137,I0035-I0038,共15页
Zinc(Zn) is an essential mineral element for plant growth and development. Zn deficiency in crops frequently occurs in many types of soils. It is therefore crucial to identify genetic resources linking Zn acquisition ... Zinc(Zn) is an essential mineral element for plant growth and development. Zn deficiency in crops frequently occurs in many types of soils. It is therefore crucial to identify genetic resources linking Zn acquisition traits and development of crops with improved Zn-use efficiency for sustainable crop production. In this study, we functionally identified a rice uncharacterized ABCG(ATP-binding cassette G-subfamily) gene encoding a PDR20(pleiotropic drug resistance 20) metal transporter for mediation of rice growth, seed development and Zn accumulation. OsPDR20 was localized to the plasma membrane, but it was not transcriptionally induced under Zn deficiency, rather was sufficiently up-regulated under high level of Zn stress. Yeast(Saccharomyces cerevisiae) transformed with OsPDR20 displayed a relatively lower Zn accumulation with attenuated cellular growth, suggesting that OsPDR20 had an activity for Zn transport. Knocking-down OsPDR20 by RNA interference(RNAi) compromised rice growth with shorter plant height and decreased biomass in rice plantlets grown under hydroponic media. Zn concentration in the roots of OsPDR20 knocked-down rice lines declined under Zn deficiency, while they remained unchanged compared with the wild type under normal Zn supply. A rice lifelong field trial demonstrated that OsPDR20 mutation impaired the capacity of seed development, with shortened panicle and seed length, compromised spikelet fertility, and reduced grain number per plant or grain weight per unit area. Interestingly, OsPDR20 mutation elevated the accumulation of Zn in husk and brown rice over the wild type. Overall, this study pointed out that OsPDR20 is fundamentally required for rice growth and seed development through Zn transport and homeostasis. 展开更多
关键词 ospdr20 zinc transport RICE seed development ABCG53 pleiotropic drug resistance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部