期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
OsSPL18 controls grain weight and grain number in rice 被引量:15
1
作者 Hua Yuan Peng Qin +13 位作者 Li Hu Shijie Zhan Shifu Wang Peng Gao Jing Li Mengya Jin Zhengyan Xu Qiang Gao Anping Du Bin Tu Weilan Chen Bingtian Ma Yuping Wang Shigui Li 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2019年第1期41-51,共11页
Grain weight and grain number are two important traits directly determining grain yield in rice. To date,a lot of genes related to grain weight and grain number have been identified; however, the regulatory mechanism ... Grain weight and grain number are two important traits directly determining grain yield in rice. To date,a lot of genes related to grain weight and grain number have been identified; however, the regulatory mechanism underlying these genes remains largely unknown. In this study, we studied the biological function of OsSPL18 during grain and panicle development in rice. Knockout (KO) mutants of OsSPL18exhibited reduced grain width and thickness, panicle length and grain number, but increased tiller number. Cytological analysis showed that OsSPL18 regulates the development of spikelet hulls by affecting cell proliferation. qRT-PCR and GUS staining analyses showed that OsSPL18 was highly expressed in developing young panicles and young spikelet hulls, in agreement with its function in regulating grain and panicle development. Transcriptional activation experiments indicated that OsSPL18is a functional transcription factor with activation domains in both the N-terminus and C-terminus, and both activation domains are indispensable for its biological functions. Quantitative expression analysis showed that DEP1, a major grain number regulator, was significantly down-regulated in OsSPL18 KO lines.Both yeast one-hybrid and dual-luciferase (LUC) assays showed that OsSPL18 could bind to the DEP1promoter, suggesting that OsSPL18 regulates panicle development by positively regulating the expression of DEP1. Sequence analysis showed that OsSPL18 contains the OsmiR156k complementary sequence in the third exon; 5?RLM-RACE experiments indicated that OsSPL18 could be cleaved by OsmiR156k. Taken together, our results uncovered a new OsmiR156k-OsSPL18-DEP1 pathway regulating grain number in rice. 展开更多
关键词 osspl18 GRAIN WEIGHT GRAIN NUMBER DEP1 RICE
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部