Rice grain number is a crucial agronomic trait impacting yield. In this study, we characterized a quantitative trait locus(QTL), GRAIN NUMBER 1.1(GN1.1), which encodes a Flowering Locus T-like1(FT-L1) protein and acts...Rice grain number is a crucial agronomic trait impacting yield. In this study, we characterized a quantitative trait locus(QTL), GRAIN NUMBER 1.1(GN1.1), which encodes a Flowering Locus T-like1(FT-L1) protein and acts as a negative regulator of grain number in rice. The elite allele GN1.1^(B),derived from the Oryza indica variety, BF3-104,exhibits a 14.6% increase in grain yield compared with the O. japonica variety, Nipponbare, based on plot yield tests. We demonstrated that GN1.1 interacted with and enhanced the stability of ADP-ribosylation factor(Arf)-GTPase-activating protein(Gap), OsZAC. Loss of function of OsZAC results in increased grain number. Based on our data, we propose that GN1.1^(B)facilitates the elevation of auxin content in young rice panicles by affecting polar auxin transport(PAT) through interaction with OsZAC. Our study unveils the pivotal role of the GN1.1 locus in rice panicle development and presents a novel, promising allele for enhancing rice grain yield through genetic improvement.展开更多
基金supported by grants from the Scientific and Technological Innovation 2030 (2023ZD040680109)the National Natural Science Foundation of China (32388201)+3 种基金the Laboratory of Lingnan Modern Agriculture Project (NT2021002)the Chinese Academy of Sciences (159231KYSB20200008)the CAS-Croucher Funding Scheme for Joint Laboratoriesthe National Key Laboratory of Plant Molecular Genetics。
文摘Rice grain number is a crucial agronomic trait impacting yield. In this study, we characterized a quantitative trait locus(QTL), GRAIN NUMBER 1.1(GN1.1), which encodes a Flowering Locus T-like1(FT-L1) protein and acts as a negative regulator of grain number in rice. The elite allele GN1.1^(B),derived from the Oryza indica variety, BF3-104,exhibits a 14.6% increase in grain yield compared with the O. japonica variety, Nipponbare, based on plot yield tests. We demonstrated that GN1.1 interacted with and enhanced the stability of ADP-ribosylation factor(Arf)-GTPase-activating protein(Gap), OsZAC. Loss of function of OsZAC results in increased grain number. Based on our data, we propose that GN1.1^(B)facilitates the elevation of auxin content in young rice panicles by affecting polar auxin transport(PAT) through interaction with OsZAC. Our study unveils the pivotal role of the GN1.1 locus in rice panicle development and presents a novel, promising allele for enhancing rice grain yield through genetic improvement.