Osa-miR439 is a rice-specific microRNA family. Here we showed that Osa-miR439 acted as anegative regulator in rice immunity against blast fungus Magnaporthe oryzae. Osa-miR439 differentiallyresponded to M. oryzae betw...Osa-miR439 is a rice-specific microRNA family. Here we showed that Osa-miR439 acted as anegative regulator in rice immunity against blast fungus Magnaporthe oryzae. Osa-miR439 differentiallyresponded to M. oryzae between susceptible and resistant rice accessions. The accumulation ofOsa-miR439 was constitutively more in the susceptible accession than in the resistant one. Transgeniclines overexpressing Osa-miR439a (OX439a) showed higher susceptibility associating with lower inductionof defense-related genes and less hydrogen peroxide (H2O2) accumulation at the infection sites than thecontrol plants. In contrast, transgenic lines expressing a target mimic of Osa-miR439 (MIM439) displayedcompromised susceptibility associating with increased H2O2 accumulation. Furthermore, we found thatthe expression of three predicted target genes was decreased in OX439a but increased in MIM439 incomparison to control plants, and this expression was differential in susceptible and resistant accessionsupon M. oryzae infection, indicating that Osa-miR439a may regulate rice blast resistance via these genes.Our results unveiled the role of Osa-miR439a in rice blast resistance and provided the potentiality toimprove the blast resistance via miRNA.展开更多
介绍了澳大利亚于2009年颁布的AS 7509.1《铁路机车车辆—动力学性能—第1部分:机车车辆》中机车车辆在扭曲测试轨上脱轨安全性测量方法,在SIMPACK软件中模拟AS 7509.1标准中的实验扭曲轨道条件,进行车辆脱轨安全性计算方法。与欧洲在2...介绍了澳大利亚于2009年颁布的AS 7509.1《铁路机车车辆—动力学性能—第1部分:机车车辆》中机车车辆在扭曲测试轨上脱轨安全性测量方法,在SIMPACK软件中模拟AS 7509.1标准中的实验扭曲轨道条件,进行车辆脱轨安全性计算方法。与欧洲在2005年颁布的BS EN 14363《铁路设施—铁路车辆运行特性的验收试验—运行性能试验和稳定性试验》中计算机仿真评价机车车辆低速抗爬轨能力方法进行比较分析得出,AS 7509.1标准比BS EN 14363标准验证车辆适应轨道扭曲能力的计算方法更可靠,适用性更广。展开更多
In the present study, we illustrate the strategy and protocol required to generate rice transgenics over-expressing the 21-nt form of Osa-miR820. The miR exists in two size variants of 21-nt and 24-nt so the natural p...In the present study, we illustrate the strategy and protocol required to generate rice transgenics over-expressing the 21-nt form of Osa-miR820. The miR exists in two size variants of 21-nt and 24-nt so the natural precursor cannot be employed for the purpose of miR over-expression as the cellular machinery can process both size variants thereby masking the role of PTGS regulation. Hence, we adopted the artificial miR technology to specifically over-express the 21-nt species in the transgenics. During the course of experiments it was observed that the amiR constructs probably interfered with the regeneration of the transformed callus, necessitating protocol modifications. The results indicate the successful over-expression of the 21-nt miR species. These plants can serve as a useful source for the functional dissection of the role played by the 21-nt Osa-miR820 species. They will also be valuable in highlighting the importance for the existence of a dual mode of miR mediated target regulation.展开更多
Bacterial blight(BB), which is caused by Xanthomonas oryzae pv. oryzae(Xoo), is one of the most destructive bacterial diseases of rice(Oryza sativa L.). During plant defense responses, micro RNAs(mi RNAs) play importa...Bacterial blight(BB), which is caused by Xanthomonas oryzae pv. oryzae(Xoo), is one of the most destructive bacterial diseases of rice(Oryza sativa L.). During plant defense responses, micro RNAs(mi RNAs) play important roles in regulating disease resistance. However, the functions of mi RNAs in the interaction between rice and Xoo remain relatively uncharacterized. In this study, we compared the mi RNA profiles of the BB resistant rice introgression line F329 and its susceptible recurrent parent Huang-Hua-Zhan(HHZ) at multiple time points after inoculation with Xoo. A total of 538 known and 312 novel mi RNAs were identified, among which only 17 and 26 were responsive to Xoo infection in F329 and HHZ, respectively. Compared with the expression levels in HHZ, 37 up-regulated and 53 down-regulated mi RNAs were detected in F329. The predicted target genes for the mi RNAs differentially expressed between F329 and HHZ were revealed to be associated with flavonoid synthesis, the reactive oxygen species regulatory pathway, plant hormone signal transduction, defense responses, and growth and development.Additionally, the patterns of interactions between osa-mi R390-3 p, novel_mi R_104, novel_mi R_238,osa-mi R166 k-5 p, osa-mi R529 b, and osa-mi R167 h-3 p and their target genes were further validated by quantitative real-time PCR. Furthermore, we overexpressed osa-mi R167 h-3 p in transgenic plants and proved that this mi RNA positively regulates the resistance of rice to BB. These results provide novel information regarding the mi RNA-based molecular mechanisms underlying the disease resistance of rice. The data presented herein may be useful for engineering rice BB resistance via mi RNAs.展开更多
Endogenous small RNAs are newly identified players in plant immune responses, yet their roles in rice (Oryza sativa) responding to pathogens are still less understood, especially for pathogens that can cause severe ...Endogenous small RNAs are newly identified players in plant immune responses, yet their roles in rice (Oryza sativa) responding to pathogens are still less understood, especially for pathogens that can cause severe yield losses. We examined the small RNA expression profiles of rice leaves at 2, 6, 12, and 24 hours post infection ofXanthomonas oryzae pv. oryzae (Xoo) virulent strain PXO99, the causal agent of rice bacterial blight disease. Dynamic expression changes of some miRNAs and trans-acting siRNAs were identified, together with a few novel miRNA targets, including an RLK gene targeted by osa-miR159a. 1. Coordinated expression changes were observed among some small RNAs in response to Xoo infection, with small RNAs exhibiting the same expression pattern tended to regulate genes in the same or related signaling pathways, including auxin and GA signaling pathways, nutrition and defense-related pathways. These findings reveal the dynamic and complex roles of small RNAs in rice-Xoo interactions, and identify new targets for regulating plant responses to Xoo.展开更多
基金the National Natural ScienceFoundation of China (Grant Nos. 31471761, 31430072 and31672090).
文摘Osa-miR439 is a rice-specific microRNA family. Here we showed that Osa-miR439 acted as anegative regulator in rice immunity against blast fungus Magnaporthe oryzae. Osa-miR439 differentiallyresponded to M. oryzae between susceptible and resistant rice accessions. The accumulation ofOsa-miR439 was constitutively more in the susceptible accession than in the resistant one. Transgeniclines overexpressing Osa-miR439a (OX439a) showed higher susceptibility associating with lower inductionof defense-related genes and less hydrogen peroxide (H2O2) accumulation at the infection sites than thecontrol plants. In contrast, transgenic lines expressing a target mimic of Osa-miR439 (MIM439) displayedcompromised susceptibility associating with increased H2O2 accumulation. Furthermore, we found thatthe expression of three predicted target genes was decreased in OX439a but increased in MIM439 incomparison to control plants, and this expression was differential in susceptible and resistant accessionsupon M. oryzae infection, indicating that Osa-miR439a may regulate rice blast resistance via these genes.Our results unveiled the role of Osa-miR439a in rice blast resistance and provided the potentiality toimprove the blast resistance via miRNA.
文摘介绍了澳大利亚于2009年颁布的AS 7509.1《铁路机车车辆—动力学性能—第1部分:机车车辆》中机车车辆在扭曲测试轨上脱轨安全性测量方法,在SIMPACK软件中模拟AS 7509.1标准中的实验扭曲轨道条件,进行车辆脱轨安全性计算方法。与欧洲在2005年颁布的BS EN 14363《铁路设施—铁路车辆运行特性的验收试验—运行性能试验和稳定性试验》中计算机仿真评价机车车辆低速抗爬轨能力方法进行比较分析得出,AS 7509.1标准比BS EN 14363标准验证车辆适应轨道扭曲能力的计算方法更可靠,适用性更广。
文摘In the present study, we illustrate the strategy and protocol required to generate rice transgenics over-expressing the 21-nt form of Osa-miR820. The miR exists in two size variants of 21-nt and 24-nt so the natural precursor cannot be employed for the purpose of miR over-expression as the cellular machinery can process both size variants thereby masking the role of PTGS regulation. Hence, we adopted the artificial miR technology to specifically over-express the 21-nt species in the transgenics. During the course of experiments it was observed that the amiR constructs probably interfered with the regeneration of the transformed callus, necessitating protocol modifications. The results indicate the successful over-expression of the 21-nt miR species. These plants can serve as a useful source for the functional dissection of the role played by the 21-nt Osa-miR820 species. They will also be valuable in highlighting the importance for the existence of a dual mode of miR mediated target regulation.
基金supported by grants from the National Natural Science Foundation of China(31571632 and 31661143009)the CAAS Innovative Team Award,and the Bill&Melinda Gates Foundation(OPP51587)。
文摘Bacterial blight(BB), which is caused by Xanthomonas oryzae pv. oryzae(Xoo), is one of the most destructive bacterial diseases of rice(Oryza sativa L.). During plant defense responses, micro RNAs(mi RNAs) play important roles in regulating disease resistance. However, the functions of mi RNAs in the interaction between rice and Xoo remain relatively uncharacterized. In this study, we compared the mi RNA profiles of the BB resistant rice introgression line F329 and its susceptible recurrent parent Huang-Hua-Zhan(HHZ) at multiple time points after inoculation with Xoo. A total of 538 known and 312 novel mi RNAs were identified, among which only 17 and 26 were responsive to Xoo infection in F329 and HHZ, respectively. Compared with the expression levels in HHZ, 37 up-regulated and 53 down-regulated mi RNAs were detected in F329. The predicted target genes for the mi RNAs differentially expressed between F329 and HHZ were revealed to be associated with flavonoid synthesis, the reactive oxygen species regulatory pathway, plant hormone signal transduction, defense responses, and growth and development.Additionally, the patterns of interactions between osa-mi R390-3 p, novel_mi R_104, novel_mi R_238,osa-mi R166 k-5 p, osa-mi R529 b, and osa-mi R167 h-3 p and their target genes were further validated by quantitative real-time PCR. Furthermore, we overexpressed osa-mi R167 h-3 p in transgenic plants and proved that this mi RNA positively regulates the resistance of rice to BB. These results provide novel information regarding the mi RNA-based molecular mechanisms underlying the disease resistance of rice. The data presented herein may be useful for engineering rice BB resistance via mi RNAs.
基金supported by the National Natural Science Foundation of China (grant No. 31371318)the National Basic Research Program of China (grant No. 2011CB100703)the State Key Laboratory of Plant Genomics (grant No. SKLPG2011B0105)
文摘Endogenous small RNAs are newly identified players in plant immune responses, yet their roles in rice (Oryza sativa) responding to pathogens are still less understood, especially for pathogens that can cause severe yield losses. We examined the small RNA expression profiles of rice leaves at 2, 6, 12, and 24 hours post infection ofXanthomonas oryzae pv. oryzae (Xoo) virulent strain PXO99, the causal agent of rice bacterial blight disease. Dynamic expression changes of some miRNAs and trans-acting siRNAs were identified, together with a few novel miRNA targets, including an RLK gene targeted by osa-miR159a. 1. Coordinated expression changes were observed among some small RNAs in response to Xoo infection, with small RNAs exhibiting the same expression pattern tended to regulate genes in the same or related signaling pathways, including auxin and GA signaling pathways, nutrition and defense-related pathways. These findings reveal the dynamic and complex roles of small RNAs in rice-Xoo interactions, and identify new targets for regulating plant responses to Xoo.