Zn neural networks, both excitatory and inhibitory cells play important roles in determining the functions of systems. Various dynamical networks have been proposed as artificial neural networks to study the propertie...Zn neural networks, both excitatory and inhibitory cells play important roles in determining the functions of systems. Various dynamical networks have been proposed as artificial neural networks to study the properties of biological systems where the influences of excitatory nodes have been extensively investigated while those of inhibitory nodes have been studied much less. In this paper, we consider a model of oscillatory networks of excitable Boolean maps consisting of both excitatory and inhibitory nodes, focusing on the roles of inhibitory nodes. We find that inhibitory nodes in sparse networks (smM1 average connection degree) play decisive roles in weakening oscillations, and oscillation death occurs after continual weakening of oscillation for sufficiently high inhibitory node density. In the sharp contrast, increasing inhibitory nodes in dense networks may result in the increase of oscillation amplitude and sudden oscillation death at much lower inhibitory node density and the nearly highest excitation activities. Mechanism under these peculiar behaviors of dense networks is explained by the competition of the duplex effects of inhibitory nodes.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos. 10975015 and 11174034the Fundamental Research Funds for the Central Universities
文摘Zn neural networks, both excitatory and inhibitory cells play important roles in determining the functions of systems. Various dynamical networks have been proposed as artificial neural networks to study the properties of biological systems where the influences of excitatory nodes have been extensively investigated while those of inhibitory nodes have been studied much less. In this paper, we consider a model of oscillatory networks of excitable Boolean maps consisting of both excitatory and inhibitory nodes, focusing on the roles of inhibitory nodes. We find that inhibitory nodes in sparse networks (smM1 average connection degree) play decisive roles in weakening oscillations, and oscillation death occurs after continual weakening of oscillation for sufficiently high inhibitory node density. In the sharp contrast, increasing inhibitory nodes in dense networks may result in the increase of oscillation amplitude and sudden oscillation death at much lower inhibitory node density and the nearly highest excitation activities. Mechanism under these peculiar behaviors of dense networks is explained by the competition of the duplex effects of inhibitory nodes.