Based on ANSYS software, a finite element model is built for the fatigue break of a vibration feeder influenced by an exciting force alternate load. We first study the harmonic response of the feeder and discovers the...Based on ANSYS software, a finite element model is built for the fatigue break of a vibration feeder influenced by an exciting force alternate load. We first study the harmonic response of the feeder and discovers the weak links which is an angle steel junction of side plate, feed inlet and the junction panel between the no-feed side plate and the bottom plate. Then, we carry out structural optimization. A streamlined method for optimum design of a vibration feeder is presented.展开更多
In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on ...In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on the bounda-ries among fluid saturated porous medium, elastic single-phase medium and ideal fluid medium. This method is a very effective one with the characteristic of high calculating speed and small memory needed because the formulae for this explicit finite element method have the characteristic of decoupling, and which does not need to solve sys-tem of linear equations. The method is applied to analyze the dynamic response of a reservoir with considering the dynamic interactions among water, dam, sediment and basement rock. The vertical displacement at the top point of the dam is calculated and some conclusions are given.展开更多
In designing a horizontal directional drilling (HDD) pipeline project, designers face the challenge of determining the regions of maximum and minimum stresses on pipelines, ensuring the stability of the bore-hole from...In designing a horizontal directional drilling (HDD) pipeline project, designers face the challenge of determining the regions of maximum and minimum stresses on pipelines, ensuring the stability of the bore-hole from collapse and minimizing the stresses induced on the pipeline due to the bore-profile. This study analyses the stress induced on an HDD pipeline system using the ANSYS Version 18, mechanical APDL finite element (FE) software. The pipeline used as the case study was a gas transmission pipeline installed in south-west Nigeria. A macro-file for ANSYS Version 18, mechanical APDL used to model the pipeline was developed. The results showed that the maximum and minimum stresses induced on the HDD pipeline were at the top and bottom of the pipe, respectively;while the stresses on the sides were uniform (≈888 kg/cm2) all through the pipeline, irrespective of element number. The maximum stress occurred at the curvature point with the highest entry angle (10°), resulting in a maximum deflection at this point. The model stress validation performed by comparing results with theoretical solutions, both with respect to radius of curvature and internal pressure, showed percentage difference (errors) less than 10%. The cross sectional area validation showed a percentage difference of 0.059%.展开更多
In this paper, by using adequate stress-strain relationship, mesh elements, boundary conditions and loading conditions, the finite element ANSYS analysis on the behavior of circular tubes subjected to symmetrical cycl...In this paper, by using adequate stress-strain relationship, mesh elements, boundary conditions and loading conditions, the finite element ANSYS analysis on the behavior of circular tubes subjected to symmetrical cyclic bending with or without external pressure is discussed. The behavior includes the moment-curvature and ovalization-curvature relationships. In addition, the calculated ovalizations at two different sections, middle and right cross-sections, are also included. Experimental data for 6061-T6 aluminum alloy tubes subjected to cyclic bending with or without external pressure were compared with the ANSYS analysis. It has been shown that the analysis of the elastoplatic moment-curvature relationship and the symmetrical, ratcheting and increasing ovalization-curvature relationship is in good agreement with the experimental data.展开更多
In the last decade, three dimensional discontin- uous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a ...In the last decade, three dimensional discontin- uous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a linear displacement function to describe the block movement and deformation, which would cause block expansion under rigid body rotation and thus limit its capability to model block de- formation. In this paper, 3D DDA is coupled with tetrahe- dron finite elements to tackle these two problems. Tetrahe- dron is the simplest in the 3D domain and makes it easy to implement automatic discretization, even for complex topol- ogy shape. Furthermore, element faces will remain planar and element edges will remain straight after deformation for tetrahedron finite elements and polyhedral contact detection schemes can be used directly. The matrices of equilibrium equations for this coupled method are given in detail and an effective contact searching algorithm is suggested. Valida- tion is conducted by comparing the results of the proposed coupled method with that of physical model tests using one of the most common failure modes, i.e., wedge failure. Most of the failure modes predicted by the coupled method agree with the physical model results except for 4 cases out of the total 65 cases. Finally, a complex rockslide example demon- strates the robustness and versatility of the coupled method.展开更多
A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a dire...A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a direct-coupled electrical-thermal Finite Element Analysis (FEA) is performed to analyze the transient thermal characteristics of the RSW process. Then based on the thermal results a sequential coupled thermo-elastic-plastic analysis is conducted to determine the mechanical features of the RSW process. The thermal history of the whole process and the temperature distribution of the weldment are obtained through the analysis. The mechanical features, including the distributions of the contact pressure at both the faying surface and the electrode-workpiece interface, the stress and strain distributions in the weldment and their changes during the RSW process, the deformation of the weldment and the electrode displacement are also calculated.展开更多
This paper studied the thermal stresses of ceramicl metal gradient thermal barrier coating which combines the conceptions of ceramic thermal barrier coating (TBC) and functionally gradient material (FGM). Thermal ...This paper studied the thermal stresses of ceramicl metal gradient thermal barrier coating which combines the conceptions of ceramic thermal barrier coating (TBC) and functionally gradient material (FGM). Thermal stresses and residual thermal stresses were calculated by an ANSYS finite element analysis software. Negative thermal expansion coefficient method was proposed and element birth and death method was applied to analyze the residual thermal stresses which have non-uniform initial temperature field. The numerical results show a good agreement with the analytical results and the experimental results.展开更多
To simplify the stability analysis of frozen soil slope, a pseudo-coupled numerical approach is developed. In this approach, the coupled heat transfer and water flow in frozen soils are simulated first, and based on t...To simplify the stability analysis of frozen soil slope, a pseudo-coupled numerical approach is developed. In this approach, the coupled heat transfer and water flow in frozen soils are simulated first, and based on the computed thermal-hydro field, the stability of frozen soil slope is evaluated. Although the shear strength for frozen soil is very complicated and is usually represented by a nonlinear MC failure criterion, a simple linear MC yield criterion is utilized. In this method, the internal friction angle is expressed as a function of volumetric ice content and the cohesion is fitted as a simple bilinear expression of Tand volumetric water content. To assess slope stability, the limit analysis is employed in conjunction with the recently developed a-section search algorithm. A frozen soil slope example is used to examine the proposed pseudo-coupled numerical approach, and numerical studies validate its effectiveness. Based on numerical results, it is seen that slope stability may be remarkably influenced by warming air (or grotmd surface) temperature. With increasing ground surface temperature, slope stability indicated by FOS may reduce to 1.0, implying that wanning air temperature could be a trigger of frozen soil slope failure.展开更多
Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the...Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad.展开更多
The dynamics of spatial parallel manipulator with rigid and flexible links is explored. Firstly, a spatial beam element model for finite element analysis is established. Then, the differential equation of motion of be...The dynamics of spatial parallel manipulator with rigid and flexible links is explored. Firstly, a spatial beam element model for finite element analysis is established. Then, the differential equation of motion of beam element is derived based on finite element method. The kinematic constraints of parallel manipulator with rigid and flexible links are obtained by analyzing the motive parameters of moving platform and the relationships of movements of kinematic chains, and the overall kinetic equation of the parallel mechanism with rigid and flexible links is derived by assembling the differential equations of motion of components. On the basis of abovementioned analyses, the dynamic mechanical analysis of the spatial parallel manipulator with rigid and flexible links is conducted. After obtaining the method for force analysis and expressions for the calculation of dynamic stress of flexible components, the dynamic analysis and simulation of spatial parallel manipulator with rigid and flexible links is performed. The result shows that because of the elastic deformation of flexible components in the parallel mechanism with rigid and flexible links, the force on each component in the mechanism fluctuates sharply, and the change of normal stress at the root of drive components is also remarkable. This study provides references for further studies on the dynamic characteristics of parallel mechanisms with rigid and flexible links and for the optimization of the design of the mechanism.展开更多
Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mecha...Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mechanical model,radial forging process of a hollow stepped gear shaft for automobile was simulated.The optimal combination of three process parameters including initial temperature,rotation rate and radial reduction was also selected using orthogonal design method.To examine the strain inhomogeneity of the forging workpiece,the strain inhomogeneity factor was introduced.The results reveal that the maximum effective strain and the minimum effective strain appeared in the outermost and innermost zones of different cross sections for the hollow stepped gear shaft,respectively.Optimal forging parameters are determined as a combination of initial temperature of 780°C,rotation rate of 21°/stroke and radial reduction of 3 mm.展开更多
The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil i...The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress' s variation and magnetic induction intensity's variation is: Δδ =K* ΔB, K = 8.04×109, which is proved correct by physical experiment.展开更多
This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and stron...This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator.It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects(i.e.,piezoelectric coupling effect).In addition,there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end(i.e.,3-D effect).Hence,modeling of these effects or 3-D piezoelectric coupling modeling is an electromechanical basis for the piezoelectric devices,which contributes to the accurate prediction of their behavior.展开更多
The effect of various process variables on the law of metal flow for semi-solid rolling 60Si2Mn was studied by finite element method. Semi-solid 60Si2Mn can be described as compressible rigid visco-plastic porous mate...The effect of various process variables on the law of metal flow for semi-solid rolling 60Si2Mn was studied by finite element method. Semi-solid 60Si2Mn can be described as compressible rigid visco-plastic porous material saturated with liquid. In terms of ther-mo-mechanical coupling condition, the distributions of stress, velocity and temperature were studied using software MARC. The simulation results show that the rigid visco-plastic model can accurately describe the semi-solid 60Si2Mn rolling process. The great deformation can achieve completely in view of low flow stress of semi-solid slurry.展开更多
分离式模型的建立是钢筋混凝土结构和构件仿真中的关键问题,本文基于A N S Y S平台,以某钢筋混凝土实腹深梁为算例,开展2种共节点建模方法和2种不共节点建模方法下的非线性有限元对比分析,探讨建模方法对于仿真结果的影响。结果表明:节...分离式模型的建立是钢筋混凝土结构和构件仿真中的关键问题,本文基于A N S Y S平台,以某钢筋混凝土实腹深梁为算例,开展2种共节点建模方法和2种不共节点建模方法下的非线性有限元对比分析,探讨建模方法对于仿真结果的影响。结果表明:节点生成切割法与弱耦合法在极限承载力和变形能力等方面的数值模拟结果较接近且均与试验结果较吻合,而强耦合法得出的极限承载力偏高;基于布尔运算切割几何模型的共节点建模方式,适用于形状规整、配筋简单的构件;在钢筋节点与混凝土节点之间,通过节点位移就近耦合的原则建立刚性连接的强耦合法,以及通过节点位移约束方程建立柔性连接的弱耦合法,都有着更强的通用性,能够完成边界条件或配筋方式复杂的构件建模,但相比之下,强耦合法计算精度略低,弱耦合法实现难度较高,所以在工程仿真中需要根据构件的几何特点和配筋方式选择合适的建模方法。展开更多
文摘Based on ANSYS software, a finite element model is built for the fatigue break of a vibration feeder influenced by an exciting force alternate load. We first study the harmonic response of the feeder and discovers the weak links which is an angle steel junction of side plate, feed inlet and the junction panel between the no-feed side plate and the bottom plate. Then, we carry out structural optimization. A streamlined method for optimum design of a vibration feeder is presented.
基金National Natural Scienccs Foundation of China (50178005).
文摘In this paper, an explicit finite element method to analyze the dynamic responses of three-medium coupled systems with any terrain is developed on the basis of the numerical simulation of the continuous conditions on the bounda-ries among fluid saturated porous medium, elastic single-phase medium and ideal fluid medium. This method is a very effective one with the characteristic of high calculating speed and small memory needed because the formulae for this explicit finite element method have the characteristic of decoupling, and which does not need to solve sys-tem of linear equations. The method is applied to analyze the dynamic response of a reservoir with considering the dynamic interactions among water, dam, sediment and basement rock. The vertical displacement at the top point of the dam is calculated and some conclusions are given.
文摘In designing a horizontal directional drilling (HDD) pipeline project, designers face the challenge of determining the regions of maximum and minimum stresses on pipelines, ensuring the stability of the bore-hole from collapse and minimizing the stresses induced on the pipeline due to the bore-profile. This study analyses the stress induced on an HDD pipeline system using the ANSYS Version 18, mechanical APDL finite element (FE) software. The pipeline used as the case study was a gas transmission pipeline installed in south-west Nigeria. A macro-file for ANSYS Version 18, mechanical APDL used to model the pipeline was developed. The results showed that the maximum and minimum stresses induced on the HDD pipeline were at the top and bottom of the pipe, respectively;while the stresses on the sides were uniform (≈888 kg/cm2) all through the pipeline, irrespective of element number. The maximum stress occurred at the curvature point with the highest entry angle (10°), resulting in a maximum deflection at this point. The model stress validation performed by comparing results with theoretical solutions, both with respect to radius of curvature and internal pressure, showed percentage difference (errors) less than 10%. The cross sectional area validation showed a percentage difference of 0.059%.
文摘In this paper, by using adequate stress-strain relationship, mesh elements, boundary conditions and loading conditions, the finite element ANSYS analysis on the behavior of circular tubes subjected to symmetrical cyclic bending with or without external pressure is discussed. The behavior includes the moment-curvature and ovalization-curvature relationships. In addition, the calculated ovalizations at two different sections, middle and right cross-sections, are also included. Experimental data for 6061-T6 aluminum alloy tubes subjected to cyclic bending with or without external pressure were compared with the ANSYS analysis. It has been shown that the analysis of the elastoplatic moment-curvature relationship and the symmetrical, ratcheting and increasing ovalization-curvature relationship is in good agreement with the experimental data.
基金supported by the Key Project of Chinese National Programs for Fundamental Research and Development(2010CB731502)the National Natural Science Foundation of China(50978745)
文摘In the last decade, three dimensional discontin- uous deformation analyses (3D DDA) has attracted more and more attention of researchers and geotechnical engineers worldwide. The original DDA formulation utilizes a linear displacement function to describe the block movement and deformation, which would cause block expansion under rigid body rotation and thus limit its capability to model block de- formation. In this paper, 3D DDA is coupled with tetrahe- dron finite elements to tackle these two problems. Tetrahe- dron is the simplest in the 3D domain and makes it easy to implement automatic discretization, even for complex topol- ogy shape. Furthermore, element faces will remain planar and element edges will remain straight after deformation for tetrahedron finite elements and polyhedral contact detection schemes can be used directly. The matrices of equilibrium equations for this coupled method are given in detail and an effective contact searching algorithm is suggested. Valida- tion is conducted by comparing the results of the proposed coupled method with that of physical model tests using one of the most common failure modes, i.e., wedge failure. Most of the failure modes predicted by the coupled method agree with the physical model results except for 4 cases out of the total 65 cases. Finally, a complex rockslide example demon- strates the robustness and versatility of the coupled method.
文摘A two-dimensional axisymmetric finite element model is developed to analyze the transient thermal and mechanical behaviors of the Resistance Spot Welding (RSW) process using commercial software ANSYS. Firstly a direct-coupled electrical-thermal Finite Element Analysis (FEA) is performed to analyze the transient thermal characteristics of the RSW process. Then based on the thermal results a sequential coupled thermo-elastic-plastic analysis is conducted to determine the mechanical features of the RSW process. The thermal history of the whole process and the temperature distribution of the weldment are obtained through the analysis. The mechanical features, including the distributions of the contact pressure at both the faying surface and the electrode-workpiece interface, the stress and strain distributions in the weldment and their changes during the RSW process, the deformation of the weldment and the electrode displacement are also calculated.
文摘This paper studied the thermal stresses of ceramicl metal gradient thermal barrier coating which combines the conceptions of ceramic thermal barrier coating (TBC) and functionally gradient material (FGM). Thermal stresses and residual thermal stresses were calculated by an ANSYS finite element analysis software. Negative thermal expansion coefficient method was proposed and element birth and death method was applied to analyze the residual thermal stresses which have non-uniform initial temperature field. The numerical results show a good agreement with the analytical results and the experimental results.
基金supported in part by the Scientific Research Foundation for the 973 Program of China (No. 2012CB026104)Research Fund of Young Teachers for the Doctoral Program of Higher Education of China (No. 20110009120020)the Fundamental Research Funds of the Central Universities (No. 2013JBM059)
文摘To simplify the stability analysis of frozen soil slope, a pseudo-coupled numerical approach is developed. In this approach, the coupled heat transfer and water flow in frozen soils are simulated first, and based on the computed thermal-hydro field, the stability of frozen soil slope is evaluated. Although the shear strength for frozen soil is very complicated and is usually represented by a nonlinear MC failure criterion, a simple linear MC yield criterion is utilized. In this method, the internal friction angle is expressed as a function of volumetric ice content and the cohesion is fitted as a simple bilinear expression of Tand volumetric water content. To assess slope stability, the limit analysis is employed in conjunction with the recently developed a-section search algorithm. A frozen soil slope example is used to examine the proposed pseudo-coupled numerical approach, and numerical studies validate its effectiveness. Based on numerical results, it is seen that slope stability may be remarkably influenced by warming air (or grotmd surface) temperature. With increasing ground surface temperature, slope stability indicated by FOS may reduce to 1.0, implying that wanning air temperature could be a trigger of frozen soil slope failure.
基金the National High Technical Reasearch and Development Programme of China (No. 2003AA327140) the National Natural Science Foundation of China (No. 50374081).
文摘Two full 3D steady mathematical models are developed by finite element method (FEM) to calcalate coupled physics fields. the electro-magnetic model is built and solved first and so is the fluid motion model with the acquired electromagnetic force as source body forces in Navier-Stokes equations. Effects caused by the ferromagnetic shell, busbar system around, and open boundary problem as well as inside induced current were considered in terms of the magnetic field. Furthermore, a new modeling method is found to set up solid models and then mesh them entirely with so-called structuralized grids, namely hex-mesh. Examples of 75kA prebaked cell with two kinds of busbar arrangements are presented. Results agree with those disclosed in the literature and confirm that the coupled simulation is valid. It is also concluded that the usage of these models facilitates the consistent analysis of the electric field to magnetic field and then flow motion to the greater extent, local distributions of current density and magnetic flux density are very much dependent on the cell structure, the steel shell is a shield to reduce the magnetic field and flow pattern is two dimensional in the main body of the metal pad.
基金Projects(2014QNB18,2015XKMS022)supported by the Fundamental Research Funds for the Central Universities of ChinaProjects(51475456,51575511)supported by the National Natural Science Foundation of China+1 种基金Project supported by the Priority Academic Programme Development of Jiangsu Higher Education InstitutionsProject supported by the Visiting Scholar Foundation of China Scholarship Council
文摘The dynamics of spatial parallel manipulator with rigid and flexible links is explored. Firstly, a spatial beam element model for finite element analysis is established. Then, the differential equation of motion of beam element is derived based on finite element method. The kinematic constraints of parallel manipulator with rigid and flexible links are obtained by analyzing the motive parameters of moving platform and the relationships of movements of kinematic chains, and the overall kinetic equation of the parallel mechanism with rigid and flexible links is derived by assembling the differential equations of motion of components. On the basis of abovementioned analyses, the dynamic mechanical analysis of the spatial parallel manipulator with rigid and flexible links is conducted. After obtaining the method for force analysis and expressions for the calculation of dynamic stress of flexible components, the dynamic analysis and simulation of spatial parallel manipulator with rigid and flexible links is performed. The result shows that because of the elastic deformation of flexible components in the parallel mechanism with rigid and flexible links, the force on each component in the mechanism fluctuates sharply, and the change of normal stress at the root of drive components is also remarkable. This study provides references for further studies on the dynamic characteristics of parallel mechanisms with rigid and flexible links and for the optimization of the design of the mechanism.
基金Projects(51774054,51974050)supported by the National Natural Science Foundation of China。
文摘Due to the current trend towards lightweight design in automotive industry,hollow stepped gear shafts for automobile and its radial forging process are widely investigated.Utilizing coupled finite element thermo-mechanical model,radial forging process of a hollow stepped gear shaft for automobile was simulated.The optimal combination of three process parameters including initial temperature,rotation rate and radial reduction was also selected using orthogonal design method.To examine the strain inhomogeneity of the forging workpiece,the strain inhomogeneity factor was introduced.The results reveal that the maximum effective strain and the minimum effective strain appeared in the outermost and innermost zones of different cross sections for the hollow stepped gear shaft,respectively.Optimal forging parameters are determined as a combination of initial temperature of 780°C,rotation rate of 21°/stroke and radial reduction of 3 mm.
基金supported by the National Natural Science Foundation of China(No.41174157)
文摘The casing damage has been a big problem in oilfield production. The current detection methods mostly are used after casing damage, which is not very effective. With the rapid development of China's offshore oil industry, the number of offshore oil wells is becoming larger and larger. Because the cost of offshore oil well is very high, the casing damage will cause huge economic losses. What's more, it can also bring serious pollution to marine environment. So the effective methods of detecting casing damage are required badly. The accumulation of stress is the main reason for the casing damage. Magnetic anisotropy technique based on counter magnetostriction effect can detect the stress of casing in real time and help us to find out the hidden dangers in time. It is essential for us to prevent the casing damage from occurring. However, such technique is still in the development stage. Previous studies mostly got the relationship between stress and magnetic signals by physical experiment, and the study of physical mechanism in relative magnetic permeability connecting the stress and magnetic signals is rarely reported. The present paper uses the ANSYS to do the three-dimensional finite element numerical simulation to study how the relative magnetic permeability works for the oil casing model. We find that the quantitative relationship between the stress' s variation and magnetic induction intensity's variation is: Δδ =K* ΔB, K = 8.04×109, which is proved correct by physical experiment.
基金supported by the Japan Society for the Promotion of Science under KAKENHI Grant Nos.19F19379 and 20H04199。
文摘This paper demonstrates the importance of three-dimensional(3-D)piezoelectric coupling in the electromechanical behavior of piezoelectric devices using three-dimensional finite element analyses based on weak and strong coupling models for a thin cantilevered piezoelectric bimorph actuator.It is found that there is a significant difference between the strong and weak coupling solutions given by coupling direct and inverse piezoelectric effects(i.e.,piezoelectric coupling effect).In addition,there is significant longitudinal bending caused by the constraint of the inverse piezoelectric effect in the width direction at the fixed end(i.e.,3-D effect).Hence,modeling of these effects or 3-D piezoelectric coupling modeling is an electromechanical basis for the piezoelectric devices,which contributes to the accurate prediction of their behavior.
基金the National Natural Science Foundation of China (No.59995440).
文摘The effect of various process variables on the law of metal flow for semi-solid rolling 60Si2Mn was studied by finite element method. Semi-solid 60Si2Mn can be described as compressible rigid visco-plastic porous material saturated with liquid. In terms of ther-mo-mechanical coupling condition, the distributions of stress, velocity and temperature were studied using software MARC. The simulation results show that the rigid visco-plastic model can accurately describe the semi-solid 60Si2Mn rolling process. The great deformation can achieve completely in view of low flow stress of semi-solid slurry.
文摘分离式模型的建立是钢筋混凝土结构和构件仿真中的关键问题,本文基于A N S Y S平台,以某钢筋混凝土实腹深梁为算例,开展2种共节点建模方法和2种不共节点建模方法下的非线性有限元对比分析,探讨建模方法对于仿真结果的影响。结果表明:节点生成切割法与弱耦合法在极限承载力和变形能力等方面的数值模拟结果较接近且均与试验结果较吻合,而强耦合法得出的极限承载力偏高;基于布尔运算切割几何模型的共节点建模方式,适用于形状规整、配筋简单的构件;在钢筋节点与混凝土节点之间,通过节点位移就近耦合的原则建立刚性连接的强耦合法,以及通过节点位移约束方程建立柔性连接的弱耦合法,都有着更强的通用性,能够完成边界条件或配筋方式复杂的构件建模,但相比之下,强耦合法计算精度略低,弱耦合法实现难度较高,所以在工程仿真中需要根据构件的几何特点和配筋方式选择合适的建模方法。