Mesenchymal stem cells (MSCs) have been identified and isolated from dental tissues, including stem cells from apical papilla, which demonstrated the ability to differentiate into dentin-forming odontoblasts. The hi...Mesenchymal stem cells (MSCs) have been identified and isolated from dental tissues, including stem cells from apical papilla, which demonstrated the ability to differentiate into dentin-forming odontoblasts. The histone demethylase KDM6B (also known as JMJD3) was shown to play a key role in promoting osteogenic commitment by removing epigenetic marks H3K27me3 from the promoters of osteogenic genes. Whether KDM6B is involved in odontogenic differentiation of dental MSCs, however, is not known. Here, we explored the role of KDM6B in dental MSC fate determination into the odontogenic lineage. Using shRNA-expressing lentivirus, we performed KDM6B knockdown in dental MSCs and observed that KDM6B depletion leads to a significant reduction in alkaline phosphate (ALP) activity and in formation of mineralized nodules assessed by Alizarin Red staining. Additionally, mRNA expression of odontogenic marker gene SP7 (osterix, OSX), as well as extracellular matrix genes BGLAP (osteoclacin, OCN) and SPP1 (osteopontin, OPN), was suppressed by KDM6B depletion. When KDM6B was overexpressed in KDM6B-knockdown MSCs, odontogenic differentiation was restored, further confirming the facilitating role of KDM6B in odontogenic commitment. Mechanistically, KDM6B was recruited to bone morphogenic protein 2 (BMP2) promoters and the subsequent removal of silencing H3K27me3 marks led to the activation of this odontogenic master transcription gene. Taken together, our results demonstrated the critical role of a histone demethylase in the epigenetic regulation of odontogenic differentiation of dental MSCs. KDM6B may present as a potential therapeutic target in the regeneration of tooth structures and the repair of craniofacial defects.展开更多
Human dental pulp cells (hDPCs) possess the capacity to differentiate into odontoblast-like cells and generate reparative dentin in response to exogenous stimuli or injury. Ten-eleven translocation 1 (TET1) is a n...Human dental pulp cells (hDPCs) possess the capacity to differentiate into odontoblast-like cells and generate reparative dentin in response to exogenous stimuli or injury. Ten-eleven translocation 1 (TET1) is a novel DNA methyldioxygenase that plays an important role in the promotion of DNA demethylation and transcriptional regulation in several cell lines. However, the role of TET1 in the biological functions of hDPCs is unknown. To investigate the effect of TET1 on the proliferation and odontogenic differentiation potential of hDPCs, a recombinant shRNA lentiviral vector was used to knock down TET1 expression in hDPCs. Following TET1 knockdown, TET1 was significantly downregulated at both the mRNA and protein levels. Proliferation of the hDPCs was suppressed in the TET1 knockdown groups. Alkaline phosphatase activity, the formation of mineralized nodules, and the expression levels of DSPP and DMP1 were all reduced in the TETl-knockdown hDPCs undergoing odontogenic differentiation. Based on these results, we concluded that TET1 knockdown can prevent the proliferation and odontogenic differentiation of hDPCs, which suggests that TET1 may play an important role in dental pulp repair and regeneration.展开更多
Tooth-related diseases and tooth loss are widespread and are a major public health issue.The loss of teeth can affect chewing,speech,appearance and even psychology.Therefore,the science of tooth regeneration has emerg...Tooth-related diseases and tooth loss are widespread and are a major public health issue.The loss of teeth can affect chewing,speech,appearance and even psychology.Therefore,the science of tooth regeneration has emerged,and attention has focused on tooth regeneration based on the principles of tooth development and stem cells combined with tissue engineering technology.As undifferentiated stem cells in normal tooth tissues,dental mesenchymal stem cells(DMSCs),which are a desirable source of autologous stem cells,play a significant role in tooth regeneration.Researchers hope to reconstruct the complete tooth tissues with normal functions and vascularization by utilizing the odontogenic differentiation potential of DMSCs.Moreover,DMSCs also have the ability to differentiate towards cells of other tissue types due to their multipotency.This review focuses on the multipotential capacity of DMSCs to differentiate into various tissues,such as bone,cartilage,tendon,vessels,neural tissues,muscle-like tissues,hepatic-like tissues,eye tissues and glands and the influence of various regulatory factors,such as non-coding RNAs,signaling pathways,inflammation,aging and exosomes,on the odontogenic/osteogenic differentiation of DMSCs in tooth regeneration.The application of DMSCs in regenerative medicine and tissue engineering will be improved if the differentiation characteristics of DMSCs can be fully utilized,and the factors that regulate their differentiation can be well controlled.展开更多
背景:现有研究已经证实外泌体可有效促进牙髓再生,而经预处理来源的外泌体其生物学功能和特性会发生显著改变,对细胞的增殖、迁移和成牙分化产生不同的影响。目的:探讨外泌体及其预处理方式在牙髓再生领域的应用现状,归纳和总结影响外...背景:现有研究已经证实外泌体可有效促进牙髓再生,而经预处理来源的外泌体其生物学功能和特性会发生显著改变,对细胞的增殖、迁移和成牙分化产生不同的影响。目的:探讨外泌体及其预处理方式在牙髓再生领域的应用现状,归纳和总结影响外泌体发挥作用的预处理方式,并阐述外泌体及其预处理方式对牙髓再生的作用。方法:检索万方、中国知网、PubMed和Web of Science数据库中2006-2022年发表的相关文献,以“外泌体,牙髓再生,预处理方式”等为中文检索词,以“Exosomes,Pulp regeneration,Preconditioning method”等为英文检索词进行检索,共纳入78篇文献进行综述分析。结果与结论:①外泌体具有良好的生物相容性、低免疫原性和无细胞毒性等优势,可以通过促进干细胞成牙、成神经和成血管化进而诱导牙髓组织的新生。②经预处理衍生的外泌体可以增强对组织的修复和再生能力,并对再生牙髓的质量有显著影响。③目前应用在牙髓再生领域中的预处理方式包括炎症刺激、低氧诱导、条件培养基和三维培养,其分泌的外泌体均能有效改善再生牙髓的质量,但是不同的预处理方式对牙髓再生的具体效果和机制在未来尚需探索。展开更多
Treated dentin matrix(TDM)is an ideal scaffold material containing multiple extracellular matrix factors.The canonical Wnt signaling pathway is necessary for tooth regeneration.Thus,this study investigated whether the...Treated dentin matrix(TDM)is an ideal scaffold material containing multiple extracellular matrix factors.The canonical Wnt signaling pathway is necessary for tooth regeneration.Thus,this study investigated whether the TDM can promote the odontogenic differentiation of human dental pulp stem cells(hDPSCs)and determined the potential role of Wnt/β-catenin signaling in this process.Different concentrations of TDM promoted the dental differentiation of the hDPSCs and meanwhile,the expression of GSK3βwas decreased.Of note,the expression of the Wnt/β-catenin pathway-related genes changed significantly in the context of TDM induction,as per RNA sequencing(RNA seq)data.In addition,the experiment showed that new dentin was visible in rat mandible cultured with TDM,and the thickness was significantly thicker than that of the control group.In addition,immunohistochemical staining showed lower GSK3βexpression in new dentin.Consistently,the GSK3βknockdown hDPSCs performed enhanced odotogenesis compared with the control groups.However,GSK3βoverexpressing could decrease odotogenesis of TDM-induced hDPSCs.These results were confirmed in immunodeficient mice and Wistar rats.These suggest that TDM promotes odontogenic differentiation of hDPSCs by directly targeting GSK3βand activating the canonical Wnt/β-catenin signaling pathway and provide a theoretical basis for tooth regeneration engineering.展开更多
Amelogenin can induce odontogenic differentiation of human dental pulp cells(HDPCs),which has great potential and advantages in dentine-pulp complex regeneration.However,the unstability of amelogenin limits its furthe...Amelogenin can induce odontogenic differentiation of human dental pulp cells(HDPCs),which has great potential and advantages in dentine-pulp complex regeneration.However,the unstability of amelogenin limits its further application.This study constructed amelogenin self-assembling peptide hydrogels(L-gel or D-gel)by heating-cooling technique,investigated the effects of these hydrogels on the odontogenic differentiation of HDPCs and explored the underneath mechanism.The critical aggregation concentration,conformation,morphology,mechanical property and biological stability of the hydrogels were characterized,respectively.The effects of the hydrogels on the odontogenic differentiation of HDPCs were evaluated via alkaline phosphatase activity measurement,quantitative reverse transcription polymerase chain reaction,western blot,Alizarin red staining and scanning electron microscope.The mechanism was explored via signaling pathway experiments.Results showed that both the L-gel and D-gel stimulated the odontogenic differentiation of HDPCs on both Day 7 and Day 14,while the D-gel showed the highest enhancement effects.Meanwhile,the D-gel promoted calcium accumulation and mineralized matrix deposition on Day 21.The D-gel activated MAPK-ERK1/2 pathways in HDPCs and induced the odontogenic differentiation via ERK1/2 and transforming growth factor/smad pathways.Overall,our study demonstrated that the amelogenin peptide hydrogel stimulated the odontogenic differentiation and enhanced mineralization,which held big potential in the dentine-pulp complex regeneration.展开更多
文摘Mesenchymal stem cells (MSCs) have been identified and isolated from dental tissues, including stem cells from apical papilla, which demonstrated the ability to differentiate into dentin-forming odontoblasts. The histone demethylase KDM6B (also known as JMJD3) was shown to play a key role in promoting osteogenic commitment by removing epigenetic marks H3K27me3 from the promoters of osteogenic genes. Whether KDM6B is involved in odontogenic differentiation of dental MSCs, however, is not known. Here, we explored the role of KDM6B in dental MSC fate determination into the odontogenic lineage. Using shRNA-expressing lentivirus, we performed KDM6B knockdown in dental MSCs and observed that KDM6B depletion leads to a significant reduction in alkaline phosphate (ALP) activity and in formation of mineralized nodules assessed by Alizarin Red staining. Additionally, mRNA expression of odontogenic marker gene SP7 (osterix, OSX), as well as extracellular matrix genes BGLAP (osteoclacin, OCN) and SPP1 (osteopontin, OPN), was suppressed by KDM6B depletion. When KDM6B was overexpressed in KDM6B-knockdown MSCs, odontogenic differentiation was restored, further confirming the facilitating role of KDM6B in odontogenic commitment. Mechanistically, KDM6B was recruited to bone morphogenic protein 2 (BMP2) promoters and the subsequent removal of silencing H3K27me3 marks led to the activation of this odontogenic master transcription gene. Taken together, our results demonstrated the critical role of a histone demethylase in the epigenetic regulation of odontogenic differentiation of dental MSCs. KDM6B may present as a potential therapeutic target in the regeneration of tooth structures and the repair of craniofacial defects.
基金supported by the National Nature Science Foundation of China (grant no.81570971)
文摘Human dental pulp cells (hDPCs) possess the capacity to differentiate into odontoblast-like cells and generate reparative dentin in response to exogenous stimuli or injury. Ten-eleven translocation 1 (TET1) is a novel DNA methyldioxygenase that plays an important role in the promotion of DNA demethylation and transcriptional regulation in several cell lines. However, the role of TET1 in the biological functions of hDPCs is unknown. To investigate the effect of TET1 on the proliferation and odontogenic differentiation potential of hDPCs, a recombinant shRNA lentiviral vector was used to knock down TET1 expression in hDPCs. Following TET1 knockdown, TET1 was significantly downregulated at both the mRNA and protein levels. Proliferation of the hDPCs was suppressed in the TET1 knockdown groups. Alkaline phosphatase activity, the formation of mineralized nodules, and the expression levels of DSPP and DMP1 were all reduced in the TETl-knockdown hDPCs undergoing odontogenic differentiation. Based on these results, we concluded that TET1 knockdown can prevent the proliferation and odontogenic differentiation of hDPCs, which suggests that TET1 may play an important role in dental pulp repair and regeneration.
基金Supported by National Natural Science Foundation of China,No.81970930.
文摘Tooth-related diseases and tooth loss are widespread and are a major public health issue.The loss of teeth can affect chewing,speech,appearance and even psychology.Therefore,the science of tooth regeneration has emerged,and attention has focused on tooth regeneration based on the principles of tooth development and stem cells combined with tissue engineering technology.As undifferentiated stem cells in normal tooth tissues,dental mesenchymal stem cells(DMSCs),which are a desirable source of autologous stem cells,play a significant role in tooth regeneration.Researchers hope to reconstruct the complete tooth tissues with normal functions and vascularization by utilizing the odontogenic differentiation potential of DMSCs.Moreover,DMSCs also have the ability to differentiate towards cells of other tissue types due to their multipotency.This review focuses on the multipotential capacity of DMSCs to differentiate into various tissues,such as bone,cartilage,tendon,vessels,neural tissues,muscle-like tissues,hepatic-like tissues,eye tissues and glands and the influence of various regulatory factors,such as non-coding RNAs,signaling pathways,inflammation,aging and exosomes,on the odontogenic/osteogenic differentiation of DMSCs in tooth regeneration.The application of DMSCs in regenerative medicine and tissue engineering will be improved if the differentiation characteristics of DMSCs can be fully utilized,and the factors that regulate their differentiation can be well controlled.
文摘背景:现有研究已经证实外泌体可有效促进牙髓再生,而经预处理来源的外泌体其生物学功能和特性会发生显著改变,对细胞的增殖、迁移和成牙分化产生不同的影响。目的:探讨外泌体及其预处理方式在牙髓再生领域的应用现状,归纳和总结影响外泌体发挥作用的预处理方式,并阐述外泌体及其预处理方式对牙髓再生的作用。方法:检索万方、中国知网、PubMed和Web of Science数据库中2006-2022年发表的相关文献,以“外泌体,牙髓再生,预处理方式”等为中文检索词,以“Exosomes,Pulp regeneration,Preconditioning method”等为英文检索词进行检索,共纳入78篇文献进行综述分析。结果与结论:①外泌体具有良好的生物相容性、低免疫原性和无细胞毒性等优势,可以通过促进干细胞成牙、成神经和成血管化进而诱导牙髓组织的新生。②经预处理衍生的外泌体可以增强对组织的修复和再生能力,并对再生牙髓的质量有显著影响。③目前应用在牙髓再生领域中的预处理方式包括炎症刺激、低氧诱导、条件培养基和三维培养,其分泌的外泌体均能有效改善再生牙髓的质量,但是不同的预处理方式对牙髓再生的具体效果和机制在未来尚需探索。
基金This study was funded by the National Natural Science Foundation of China(grant numbers 31670994,U1904145,and 81901039)Nature Science Foundation of Henan province(grant number 182300410340)and Union project of Medical and Technology Research Program of Henan Province(grant number LHGJ20190191).
文摘Treated dentin matrix(TDM)is an ideal scaffold material containing multiple extracellular matrix factors.The canonical Wnt signaling pathway is necessary for tooth regeneration.Thus,this study investigated whether the TDM can promote the odontogenic differentiation of human dental pulp stem cells(hDPSCs)and determined the potential role of Wnt/β-catenin signaling in this process.Different concentrations of TDM promoted the dental differentiation of the hDPSCs and meanwhile,the expression of GSK3βwas decreased.Of note,the expression of the Wnt/β-catenin pathway-related genes changed significantly in the context of TDM induction,as per RNA sequencing(RNA seq)data.In addition,the experiment showed that new dentin was visible in rat mandible cultured with TDM,and the thickness was significantly thicker than that of the control group.In addition,immunohistochemical staining showed lower GSK3βexpression in new dentin.Consistently,the GSK3βknockdown hDPSCs performed enhanced odotogenesis compared with the control groups.However,GSK3βoverexpressing could decrease odotogenesis of TDM-induced hDPSCs.These results were confirmed in immunodeficient mice and Wistar rats.These suggest that TDM promotes odontogenic differentiation of hDPSCs by directly targeting GSK3βand activating the canonical Wnt/β-catenin signaling pathway and provide a theoretical basis for tooth regeneration engineering.
基金supported by the National Science Fund for Excellent Young Scholars(T2122019)the National Natural Science Foundation of China(51973096,51773097)+4 种基金the Natural Science Foundation of Tianjin City(18JCYBJC27000)the Technology Research and Development Program of Tianjin(20YFZCSY00830)the Tianjin Key Medical Discipline(Specialty)Construction Project(2021-516)the Science and Technology Project of Tianjin Health Commission(ZD20016)the Key Laboratory of Bioactive Materials,Ministry of Education(NKBM-2019-001,NKBM-2019-002).
文摘Amelogenin can induce odontogenic differentiation of human dental pulp cells(HDPCs),which has great potential and advantages in dentine-pulp complex regeneration.However,the unstability of amelogenin limits its further application.This study constructed amelogenin self-assembling peptide hydrogels(L-gel or D-gel)by heating-cooling technique,investigated the effects of these hydrogels on the odontogenic differentiation of HDPCs and explored the underneath mechanism.The critical aggregation concentration,conformation,morphology,mechanical property and biological stability of the hydrogels were characterized,respectively.The effects of the hydrogels on the odontogenic differentiation of HDPCs were evaluated via alkaline phosphatase activity measurement,quantitative reverse transcription polymerase chain reaction,western blot,Alizarin red staining and scanning electron microscope.The mechanism was explored via signaling pathway experiments.Results showed that both the L-gel and D-gel stimulated the odontogenic differentiation of HDPCs on both Day 7 and Day 14,while the D-gel showed the highest enhancement effects.Meanwhile,the D-gel promoted calcium accumulation and mineralized matrix deposition on Day 21.The D-gel activated MAPK-ERK1/2 pathways in HDPCs and induced the odontogenic differentiation via ERK1/2 and transforming growth factor/smad pathways.Overall,our study demonstrated that the amelogenin peptide hydrogel stimulated the odontogenic differentiation and enhanced mineralization,which held big potential in the dentine-pulp complex regeneration.