BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown...BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.展开更多
Osteochondral tissue is a highly specialized and complex tissue composed of articular cartilage and subchondral bone that are separated by a calcified cartilage interface.Multilayered or gradient scaffolds,often in co...Osteochondral tissue is a highly specialized and complex tissue composed of articular cartilage and subchondral bone that are separated by a calcified cartilage interface.Multilayered or gradient scaffolds,often in conjunction with stem cells and growth factors,have been developed to mimic the respective layers for osteochondral defect repair.In this study,we designed a hyaline cartilage-hypertrophic cartilage bilayer graft(RGD/RGDW)with chondrocytes.Previously,we demonstrated that RGD peptide-modified chondroitin sulfate cryogel(RGD group)is chondro-conductive and capable of hyaline cartilage formation.Here,we incorporated whitlockite(WH),a Mg^(2+)-containing calcium phosphate,into RGD cryogel(RGDW group)to induce chondrocyte hypertrophy and form collagen X-rich hypertrophic cartilage.This is the first study to use WH to produce hypertrophic cartilage.Chondrocytes-laden RGDW cryogel exhibited significantly upregulated expression of hypertrophy markers in vitro and formed ectopic hypertrophic cartilage in vivo,which mineralized into calcified cartilage in bone microenvironment.Subsequently,RGD cryogel and RGDW cryogel were combined into bilayer(RGD/RGDW group)and implanted into rabbit osteochondral defect,where RGD layer supports hyaline cartilage regeneration and bioceramic-containing RGDW layer promotes calcified cartilage formation.While the RGD group(monolayer)formed hyaline-like neotissue that extends into the subchondral bone,the RGD/RGDW group(bilayer)regenerated hyaline cartilage tissue confined to its respective layer and promoted osseointegration for integrative defect repair.展开更多
基金National Natural Science Foundation of China,No.U20A20403This study was conducted in accordance with the Animal Ethics Committee of the Institute of Antler Science and Product Technology,Changchun Sci-Tech University(AEC No:CKARI202309).
文摘BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.
基金supported by the National Research Foundation of Korea(NRF)grant funded by the Korean government(NRF-2021K1A3A1A57086407,NRF-2021R1A2C2008821,NRF-2022R1I1A1A01071991)Arun Kumar Rajendran was supported by the National Research Foundation of Korea(NRF)grant Brain Pool program funded by the Ministry of Science and ICT through the National Research Foundation of Korea(2020H1D3A1A04081286)The Institute of Engineering Research at Seoul National University provided research facilities,and additional support came from the SNU Engineering-Medicine Collaboration grant.
文摘Osteochondral tissue is a highly specialized and complex tissue composed of articular cartilage and subchondral bone that are separated by a calcified cartilage interface.Multilayered or gradient scaffolds,often in conjunction with stem cells and growth factors,have been developed to mimic the respective layers for osteochondral defect repair.In this study,we designed a hyaline cartilage-hypertrophic cartilage bilayer graft(RGD/RGDW)with chondrocytes.Previously,we demonstrated that RGD peptide-modified chondroitin sulfate cryogel(RGD group)is chondro-conductive and capable of hyaline cartilage formation.Here,we incorporated whitlockite(WH),a Mg^(2+)-containing calcium phosphate,into RGD cryogel(RGDW group)to induce chondrocyte hypertrophy and form collagen X-rich hypertrophic cartilage.This is the first study to use WH to produce hypertrophic cartilage.Chondrocytes-laden RGDW cryogel exhibited significantly upregulated expression of hypertrophy markers in vitro and formed ectopic hypertrophic cartilage in vivo,which mineralized into calcified cartilage in bone microenvironment.Subsequently,RGD cryogel and RGDW cryogel were combined into bilayer(RGD/RGDW group)and implanted into rabbit osteochondral defect,where RGD layer supports hyaline cartilage regeneration and bioceramic-containing RGDW layer promotes calcified cartilage formation.While the RGD group(monolayer)formed hyaline-like neotissue that extends into the subchondral bone,the RGD/RGDW group(bilayer)regenerated hyaline cartilage tissue confined to its respective layer and promoted osseointegration for integrative defect repair.