Background Understanding the mechanism of male sterility is crucial for producing hybrid seeds and developing sterile germplasm resources.However,only a few cytoplasmic male sterility(CMS)lines of cotton have been pro...Background Understanding the mechanism of male sterility is crucial for producing hybrid seeds and developing sterile germplasm resources.However,only a few cytoplasmic male sterility(CMS)lines of cotton have been produced due to several challenges,like inadequate variation of agronomic traits,incomplete sterility,weak resilience of restorer lines,and difficulty in combining strong dominance.Therefore,the morphological and cytological identification of CMS in cotton will facilitate hybrid breeding.Results Two F_(2) segregating populations of cotton were constructed from cytoplasmic male sterile lines(HaA and 01A,maternal)and restorer lines(HaR and 26R,paternal).Genetic analysis of these populations revealed a segregation ratio of 3:1 for fertile to sterile plants.Phenotypic analysis indicated no significant differences in traits of flower bud development between sterile and fertile plants.However,sterile plants exhibited smaller floral organs,shortened filament lengths,and anther atrophy on the flowering day in comparison with the fertile plants.When performed scanning electron microscopy(SEM),the two F_(2) populations revealed morphological variations in the anther epidermis.Cellular analysis showed no significant differences in pollen development before pollen maturation.Interestingly,between the pollen maturation and flowering stages,the tapetum layer of sterile plants degenerated prematurely,resulting in abnormal pollen grains and gradual pollen degradation.Conclusion The results of this study suggest that fertility-restoring genes are controlled by a single dominant gene.Sterile plants exhibit distinctive floral morphology,which is characterized by stamen atrophy and abnormal anthers.Pollen abortion occurs between pollen maturity and flowering,indicating that premature tapetum degradation may be the primary cause of pollen abortion.Overall,our study provides a theoretical basis for utilizing CMS in hybrid breeding and in-depth investigation of the dominant configuration of cotton hybrid combinations,mechanisms of sterility,and the role of sterile and restorer genes.展开更多
[ Objective] This study deals with the relation between anther nutrient metabolism and pollen abortion of male sterile lines in Lycium barbarum L., and provides some theoretical references for the pollen abortion mech...[ Objective] This study deals with the relation between anther nutrient metabolism and pollen abortion of male sterile lines in Lycium barbarum L., and provides some theoretical references for the pollen abortion mechanism of male sterile lines in Lyciurn barbarurn L.. [Method] By using semi-thin section and cytochemistry technology, the accumulation and distribution of anther nutrient of male sterile and fertile lines in Lycium barbarum L. were observed and compared. [ Result] The result showed that after meiosis, starch grains in the connective parenchyma of anther decreased sharply, and starch grains in epidermis and endothecium were also greatly decreased, while nearly no lipid accumulated in tapetal cells in male sterile lines compared with the fertile lines. The tapetal cells and tetraspore had vacuoles appear successively, and then entered the degenerate process. During the degeneration stage of tapetal cells and tetraspore, starch grains in epidermis and endothecium were still in a smell number and in the connective parenchyme as well. [ Conclusion] The decrease of polysaccharide supplying in anther vascular leads to the disorder of mechanism of glycelipid transforming in tapetal ceils, which triggers the tapetal cells degenerating ahead of time, and the latter gives rise to callus wall failing to degenerate in time. Therefore, the tetrads disintegrate and disappear ultimately due to lack of nutrition.展开更多
Ogura cytoplasmic male sterility(Ogura CMS)is extensively applied in hybrid seed production in cruciferous crops.However,the posttranscriptional molecular basis of Ogura CMS in cruciferous crops remains elusive.Here,a...Ogura cytoplasmic male sterility(Ogura CMS)is extensively applied in hybrid seed production in cruciferous crops.However,the posttranscriptional molecular basis of Ogura CMS in cruciferous crops remains elusive.Here,a data-independent acquisition-based proteomic approach coupled with a parallel reaction monitoring-based targeted proteomic assay was used to analyze the proteome dynamics of Ogura CMS cabbage line RM and its maintainer line RF during floral bud development to obtain insights into the mechanism underlying Ogura CMS in cruciferous crops.A total of 9162 proteins corresponding to 61464 peptides were identified in RM and RF floral buds.The proteomic fluctuation of RM was weaker than that of RF.Differences in protein expression between RM and RF gradually enlarged with floral bud development.Fifteen continually up-regulated and eight continually down-regulated proteins were found in RM relative to RF throughout floral bud development.Differentially expressed proteins between RM and RF during floral bud development were implicated in the endoplasmic reticulum(ER)-associated protein processing pathway,in which most of them exhibited down-regulated expression in RM.These data suggest that ER-associated protein processing may be involved in pollen abortion in Ogura CMS cabbage by inhibiting the expression of critical factors.Our findings not only deepen the understanding of the molecular mechanisms of Ogura CMS in cruciferous crops but also provide better guidance for applying Ogura CMS in the hybrid breeding of cruciferous crops.展开更多
To accelerate the breeding process, male sterile line is used to leave out the troublesome procedures of the artificial emasculation in tomato breeding. However, the fertility of the pollen thermo-sensitivity male ste...To accelerate the breeding process, male sterile line is used to leave out the troublesome procedures of the artificial emasculation in tomato breeding. However, the fertility of the pollen thermo-sensitivity male sterile line (PTMSL) and the stigma exsertion male sterile line (SEMSL) are affected easily by the environments when used alone. The trial materials were Da107 and the control was First. This study was conducted to create a new male sterile line of tomato characterized by pollen thermo-sensitivity and long style by genic recombination through the hybridizing of the PTMSL and SEMSL. Research on the statistics of the pollen germination rate, the contamination rate in F1 and the flower organics indicated that Da107 was an ideal TS and SE male sterile line with the sterility of 95%, as well as it also could be used as fertile line at low temperature. Meanwhile, the results showed that hybrid-seed contamination risk with selfed seeds from residual fertility in Da107 was low.展开更多
In cultivated rice ( Oryza sativa L.), F-1 pollen sterility is controlled by at least 6 loci of the F, pollen sterility genes. To map S-b, one of loci, rice variety Taichung 65 (T65) carrying S-b(j)/S-b(j) and its nea...In cultivated rice ( Oryza sativa L.), F-1 pollen sterility is controlled by at least 6 loci of the F, pollen sterility genes. To map S-b, one of loci, rice variety Taichung 65 (T65) carrying S-b(j)/S-b(j) and its near-isogenic line TIST2 carrying S-b(i)/S-b(i) were used to develop the mapping population. One hundred and fifty-eight microsatellite markers were selected to survey T65 and TISL2. RM13 on chromosome 5 was found to be polymorphic between them. Cosegregation indicated that RM13 was closely linked with locus S-b. Eleven RFLP markers were selected on the corresponding region from the genetic map of Rice Genome Research Program (RGP) of Japan to convert into sequence-tagged site (STS) markers. Amplicon length polymorphism (ALP) was carried out, but none of them was found to be polymorphic between T65 and TISL2. Then PCR-based RFLP (PBR) was done using six 4-nucleotide recognizing restriction endonucleases. Polymorphism was detected when PCR products of R830STS and R2213SSTS were digested with Taq I. Genetic analysis indicated that the distance between locus S-b and markers, R830STS, RM13 and R2213SSTS were 3.3 cM (centi-Morgan), 5.2 cM and 5.5 cM, respectively. These PCR-based markers could be directly used in marker-assisted selection. The technical system combining genetic mapping and PCR-based marker-assisted selection will facilitate the development of molecular breeding.展开更多
One hundred and fifty-eight microsatellite markers showing polymorphism among parents were used to survey the introgressed segments in the 50 near-isogenic lines of F_1 pollen sterility. Two hundred and sixty introgre...One hundred and fifty-eight microsatellite markers showing polymorphism among parents were used to survey the introgressed segments in the 50 near-isogenic lines of F_1 pollen sterility. Two hundred and sixty introgressed segments were detected in 50 near-isogenic lines, each carrying 5.2 introgressed segments on an average. Among the 260 segments, one hundred carrying F_1 pollen sterility loci concentrated on the region of F_1 pollen sterility genes, and the remaining one hundred and sixty without F_1 pollen sterility loci distributed randomly over 12 chromosomes. Both the average number and length of the introgressed segments decreased along with the increase of backcross generations. The number of introgressed segments was less than four and the length was less than 20 cM in the near-isogenic lines after backcrossing for four or more times.展开更多
For the two-line hybrid rice system, pol en sterility is regulated by recessive gene that responds to temperature. The recessive gene controlling thermo-sensitive genetic male sterility (TGMS) is expressed when the ...For the two-line hybrid rice system, pol en sterility is regulated by recessive gene that responds to temperature. The recessive gene controlling thermo-sensitive genetic male sterility (TGMS) is expressed when the plants are grown in conditions with higher or lower critical temperatures. To transfer tgms gene(s) control ing TGMS to Thai rice cultivars by backcross breeding method, a male sterile line was used as a donor parent while Thai rice cultivars ChaiNat 1, PathumThani 1, and SuphanBuri 1 were used as recurrent parents. The BC2F2 lines were developed from backcrossing and selfing. Moreover, the simple sequence repeat (SSR) markers were developed for identifying tgms gene and the linked marker was used for assisting selection in backcrossing. The identification lines were confirmed by pol en observation. The results showed the success of introgression of the tgms gene into Thai rice cultivars. These lines will be tested for combining ability and used as female parent in hybrid rice production in Thailand.展开更多
大豆(Glycine max (L.) Merr.)是自花授粉作物,通过人工去雄的办法生产杂交种,不仅繁琐且成本高。雄性不育基因功能的研究是大豆杂种优势利用的前提之一,大豆雄性不育位点报道较少,定位及功能研究进展缓慢。随着大豆转基因体系的成熟及...大豆(Glycine max (L.) Merr.)是自花授粉作物,通过人工去雄的办法生产杂交种,不仅繁琐且成本高。雄性不育基因功能的研究是大豆杂种优势利用的前提之一,大豆雄性不育位点报道较少,定位及功能研究进展缓慢。随着大豆转基因体系的成熟及生物技术的发展,利用反向遗传学研究大豆雄性不育基因的功能变得相对容易。本研究通过转录组数据分析发现大豆中编码小G蛋白的GmARFA1a受到大豆雄性育性控制基因MS1(Male Sterile 1)和MS2的调控,公共数据库数据表明GmARFA1a在大豆未开放的花中表达量最高,而qRT-PCR数据进一步明确GmARFA1a在大豆授粉前雄蕊中优势表达。花粉萌发实验及结实率统计发现Gmarfa1a突变体花粉活力下降导致结实率受到明显抑制。本研究对GmARFA1a基因功能进行了初步解析,明确其对大豆雄性育性存在一定影响。研究结果不仅丰富了对GmARFA1a乃至ARF基因家族成员功能的认识,也为后续深入研究大豆GmARFA1a功能及大豆杂种优势利用奠定了基础。展开更多
Sugar metabolism plays an essential role in plant male reproduction. Defects in sugar metabolism during anther and pollen development often result in genic male sterility(GMS). In this review, we summarize the recent ...Sugar metabolism plays an essential role in plant male reproduction. Defects in sugar metabolism during anther and pollen development often result in genic male sterility(GMS). In this review, we summarize the recent progresses of the sugar metabolism-related GMS genes and their roles during plant anther and pollen development, including callose wall and primexine formation, intine development, pollen maturation and starch accumulation, anther dehiscence, and pollen germination and tube growth. We predict 112 putative sugar metabolic GMS genes in maize based on bioinformatics and RNA-seq analyses, and most of them have peak expression patterns during middle or late anther developmental stages.Finally, we outline the potential applications of sugar metabolic GMS genes in crop hybrid breeding and seed production. This review will deepen our understanding on sugar metabolic pathways in controlling pollen development and male fertility in plants.展开更多
S-a, S-b and S-c are three loci for F1 pollen sterility in cultivated rice (Oryza sativa L.). Taichung 65 (T65) is all Sj/Sj at these three loci, while its F1 pollen sterile near-isogenic lines, TISL2 (S-b), TIS...S-a, S-b and S-c are three loci for F1 pollen sterility in cultivated rice (Oryza sativa L.). Taichung 65 (T65) is all Sj/Sj at these three loci, while its F1 pollen sterile near-isogenic lines, TISL2 (S-b), TISL4 (S-a) and TISL5 (S-c) is Sj/Sj according to their respective sterility locus. Using SSR molecular marker to detect the segregation of the allele Si and Sj in pollen calli population induced from different hybrid F1, which have different pollen sterility locus, showed that the segregation of allele Si and Sj was distorted. The distorted direction of pollen calli population in vitro was not the same as F2 population in vivo. The quantities of pollen callus carrying Sj were much more than that of carrying Siat S-a and S-c locus, the ratio of Si and Sj were 1:4.81 and 1:1.96 respectively. But the opposite tendency was observed at S-b locus, the ratio of Si and Sj being 1:0.35. At the same time, all these results were undisturbed by either culture medium or culture period.展开更多
Male sterility is a common biological phenomenon in plant kingdom and has been used to generate male-sterile lines, which are important genetic resources for commercial hybrid seed production. Although increasing numb...Male sterility is a common biological phenomenon in plant kingdom and has been used to generate male-sterile lines, which are important genetic resources for commercial hybrid seed production. Although increasing numbers of male-sterility genes have been identified in rice(Oryza sativa) and Arabidopsis(Arabidopsis thaliana), few male-sterility-related genes have been characterized in foxtail millet(Setaria italica). In this study, we isolated a male-sterile ethyl methanesulfonate-generated mutant in foxtail millet, no pollen 1(sinp1), which displayed abnormal Ubisch bodies, defective pollen exine and complete male sterility. Using bulk segregation analysis, we cloned SiNP1 and confirmed its function with CRISPR/Cas9 genome editing. SiNP1 encoded a putative glucose-methanol-choline oxidoreductase.Subcellular localization showed that the SiNP1 protein was preferentially localized to the endoplasmic reticulum and was predominantly expressed in panicle. Transcriptome analysis revealed that many genes were differentially expressed in the sinp1 mutant, some of which encoded proteins putatively involved in carbohydrate metabolism, fatty acid biosynthesis, and lipid transport and metabolism, which were closely associated with pollen wall development. Metabolome analysis revealed the disturbance of flavonoids metabolism and fatty acid biosynthesis in the mutant. In conclusion, identification of SiNP1 provides a candidate male-sterility gene for heterosis utilization in foxtail millet and gives further insight into the mechanism of pollen reproduction in plants.展开更多
Achieving seedlessness in citrus varieties is one of the important objectives of citrus breeding.Male sterility associated with abnormal pollen development is an important factor in seedlessness.However,our understand...Achieving seedlessness in citrus varieties is one of the important objectives of citrus breeding.Male sterility associated with abnormal pollen development is an important factor in seedlessness.However,our understanding of the regulatory mechanism underlying the seedlessness phenotype in citrus is still limited.Here,we determined that the miR159a-DUO1 module played an important role in regulating pollen development in citrus,which further indirectly modulated seed development and fruit size.Both the overexpression of csi-miR159a and the knocking out of DUO1 in Hong Kong kumquat(Fortunella hindsii)resulted in small and seedless fruit phenotypes.Moreover,pollen was severely aborted in both transgenic lines,with arrested pollen mitotic I and abnormal pollen starch metabolism.Through additional cross-pollination experiments,DUO1 was proven to be the key target gene for miR159a to regulate male sterility in citrus.Based on DNA affinity purification sequencing(DAP-seq),RNA-seq,and verified interaction assays,YUC2/YUC6,SS4 and STP8 were identified as downstream target genes of DUO1,those were all positively regulated by DUO1.In transgenic F.hindsii lines,the miR159a-DUO1 module down-regulated the expression of YUC2/YUC6,which decreased indoleacetic acid(IAA)levels and modulated auxin signaling to repress pollen mitotic I.The miR159a-DUO1 module reduced the expression of the starch synthesis gene SS4 and sugar transport gene STP8 to disrupt starch metabolism in pollen.Overall,this work reveals a new mechanism by which the miR159a-DUO1 module regulates pollen development and elucidates the molecular regulatory network underlying male sterility in citrus.展开更多
Callose contributes to many biological processes of higher plants including pollen development,cell plate and vascular tissue formation,as well as regulating the transport function of plasmodesmata.The functions of ca...Callose contributes to many biological processes of higher plants including pollen development,cell plate and vascular tissue formation,as well as regulating the transport function of plasmodesmata.The functions of callose synthase genes in maize have been little studied.We describe a maize male-sterile mutant 39(ms39)characterized by reduced plant height.In this study,we confirmed using CRISPR/Cas9 technology that a mutation in Zm00001d043909(ZmCals12),encoding a callose synthase,is responsible for the male sterility of the ms39 mutant.Compared with male-fertile plants,callose deposition around the dyads and tetrads in ms39 anthers was significantly reduced.Increased cell autophagy observed in ms39 anthers may have been due to the premature programmed cell death of tapetal cells,leading to collapse of the anther wall structure.Disordered glucose metabolism in ms39 may have intensified autophagy in anthers.Evaluation of the ms39 gene on maize heterosis by paired-crossed experiment with 11 maize inbred lines indicated that ms39 can be used for maize hybrid seed production.展开更多
基金supported by the Fund for the Biological Breeding-Major Projects in National Science and Technology(2023ZD04038)the Key Project for Agricultural Breakthrough in Core Technology of Xinjiang Production and Construction Crops(NYHXGG,2023AA102)the Key Project for Science and Technology Development of Shihezi city,Xinjiang Production and Construction Crops(2022NY01)。
文摘Background Understanding the mechanism of male sterility is crucial for producing hybrid seeds and developing sterile germplasm resources.However,only a few cytoplasmic male sterility(CMS)lines of cotton have been produced due to several challenges,like inadequate variation of agronomic traits,incomplete sterility,weak resilience of restorer lines,and difficulty in combining strong dominance.Therefore,the morphological and cytological identification of CMS in cotton will facilitate hybrid breeding.Results Two F_(2) segregating populations of cotton were constructed from cytoplasmic male sterile lines(HaA and 01A,maternal)and restorer lines(HaR and 26R,paternal).Genetic analysis of these populations revealed a segregation ratio of 3:1 for fertile to sterile plants.Phenotypic analysis indicated no significant differences in traits of flower bud development between sterile and fertile plants.However,sterile plants exhibited smaller floral organs,shortened filament lengths,and anther atrophy on the flowering day in comparison with the fertile plants.When performed scanning electron microscopy(SEM),the two F_(2) populations revealed morphological variations in the anther epidermis.Cellular analysis showed no significant differences in pollen development before pollen maturation.Interestingly,between the pollen maturation and flowering stages,the tapetum layer of sterile plants degenerated prematurely,resulting in abnormal pollen grains and gradual pollen degradation.Conclusion The results of this study suggest that fertility-restoring genes are controlled by a single dominant gene.Sterile plants exhibit distinctive floral morphology,which is characterized by stamen atrophy and abnormal anthers.Pollen abortion occurs between pollen maturity and flowering,indicating that premature tapetum degradation may be the primary cause of pollen abortion.Overall,our study provides a theoretical basis for utilizing CMS in hybrid breeding and in-depth investigation of the dominant configuration of cotton hybrid combinations,mechanisms of sterility,and the role of sterile and restorer genes.
基金Supported by Ningxia Major Scientific and Technological Project(Grant No.KGZ-09-07-04)the Natural Science Foundation of Ningxia University~~
文摘[ Objective] This study deals with the relation between anther nutrient metabolism and pollen abortion of male sterile lines in Lycium barbarum L., and provides some theoretical references for the pollen abortion mechanism of male sterile lines in Lyciurn barbarurn L.. [Method] By using semi-thin section and cytochemistry technology, the accumulation and distribution of anther nutrient of male sterile and fertile lines in Lycium barbarum L. were observed and compared. [ Result] The result showed that after meiosis, starch grains in the connective parenchyma of anther decreased sharply, and starch grains in epidermis and endothecium were also greatly decreased, while nearly no lipid accumulated in tapetal cells in male sterile lines compared with the fertile lines. The tapetal cells and tetraspore had vacuoles appear successively, and then entered the degenerate process. During the degeneration stage of tapetal cells and tetraspore, starch grains in epidermis and endothecium were still in a smell number and in the connective parenchyme as well. [ Conclusion] The decrease of polysaccharide supplying in anther vascular leads to the disorder of mechanism of glycelipid transforming in tapetal ceils, which triggers the tapetal cells degenerating ahead of time, and the latter gives rise to callus wall failing to degenerate in time. Therefore, the tetrads disintegrate and disappear ultimately due to lack of nutrition.
基金supported by Heilongjiang Provincial Natural Science Foundation of China(Grant No.YQ2022C012)China Postdoctoral Science Foundation(Grant No.2022MD713728)+1 种基金Heilongjiang Provincial Postdoctoral Fund(Grant No.LBHZ21046)the Open Project of Key Laboratory of Biology and Genetic Improvement of Horticultural Crops(Northeast Region),Ministry of Agriculture and Rural Affairs,and National Key Research and Development Program of China(Grant No.2023YFD1201501).
文摘Ogura cytoplasmic male sterility(Ogura CMS)is extensively applied in hybrid seed production in cruciferous crops.However,the posttranscriptional molecular basis of Ogura CMS in cruciferous crops remains elusive.Here,a data-independent acquisition-based proteomic approach coupled with a parallel reaction monitoring-based targeted proteomic assay was used to analyze the proteome dynamics of Ogura CMS cabbage line RM and its maintainer line RF during floral bud development to obtain insights into the mechanism underlying Ogura CMS in cruciferous crops.A total of 9162 proteins corresponding to 61464 peptides were identified in RM and RF floral buds.The proteomic fluctuation of RM was weaker than that of RF.Differences in protein expression between RM and RF gradually enlarged with floral bud development.Fifteen continually up-regulated and eight continually down-regulated proteins were found in RM relative to RF throughout floral bud development.Differentially expressed proteins between RM and RF during floral bud development were implicated in the endoplasmic reticulum(ER)-associated protein processing pathway,in which most of them exhibited down-regulated expression in RM.These data suggest that ER-associated protein processing may be involved in pollen abortion in Ogura CMS cabbage by inhibiting the expression of critical factors.Our findings not only deepen the understanding of the molecular mechanisms of Ogura CMS in cruciferous crops but also provide better guidance for applying Ogura CMS in the hybrid breeding of cruciferous crops.
文摘To accelerate the breeding process, male sterile line is used to leave out the troublesome procedures of the artificial emasculation in tomato breeding. However, the fertility of the pollen thermo-sensitivity male sterile line (PTMSL) and the stigma exsertion male sterile line (SEMSL) are affected easily by the environments when used alone. The trial materials were Da107 and the control was First. This study was conducted to create a new male sterile line of tomato characterized by pollen thermo-sensitivity and long style by genic recombination through the hybridizing of the PTMSL and SEMSL. Research on the statistics of the pollen germination rate, the contamination rate in F1 and the flower organics indicated that Da107 was an ideal TS and SE male sterile line with the sterility of 95%, as well as it also could be used as fertile line at low temperature. Meanwhile, the results showed that hybrid-seed contamination risk with selfed seeds from residual fertility in Da107 was low.
文摘In cultivated rice ( Oryza sativa L.), F-1 pollen sterility is controlled by at least 6 loci of the F, pollen sterility genes. To map S-b, one of loci, rice variety Taichung 65 (T65) carrying S-b(j)/S-b(j) and its near-isogenic line TIST2 carrying S-b(i)/S-b(i) were used to develop the mapping population. One hundred and fifty-eight microsatellite markers were selected to survey T65 and TISL2. RM13 on chromosome 5 was found to be polymorphic between them. Cosegregation indicated that RM13 was closely linked with locus S-b. Eleven RFLP markers were selected on the corresponding region from the genetic map of Rice Genome Research Program (RGP) of Japan to convert into sequence-tagged site (STS) markers. Amplicon length polymorphism (ALP) was carried out, but none of them was found to be polymorphic between T65 and TISL2. Then PCR-based RFLP (PBR) was done using six 4-nucleotide recognizing restriction endonucleases. Polymorphism was detected when PCR products of R830STS and R2213SSTS were digested with Taq I. Genetic analysis indicated that the distance between locus S-b and markers, R830STS, RM13 and R2213SSTS were 3.3 cM (centi-Morgan), 5.2 cM and 5.5 cM, respectively. These PCR-based markers could be directly used in marker-assisted selection. The technical system combining genetic mapping and PCR-based marker-assisted selection will facilitate the development of molecular breeding.
文摘One hundred and fifty-eight microsatellite markers showing polymorphism among parents were used to survey the introgressed segments in the 50 near-isogenic lines of F_1 pollen sterility. Two hundred and sixty introgressed segments were detected in 50 near-isogenic lines, each carrying 5.2 introgressed segments on an average. Among the 260 segments, one hundred carrying F_1 pollen sterility loci concentrated on the region of F_1 pollen sterility genes, and the remaining one hundred and sixty without F_1 pollen sterility loci distributed randomly over 12 chromosomes. Both the average number and length of the introgressed segments decreased along with the increase of backcross generations. The number of introgressed segments was less than four and the length was less than 20 cM in the near-isogenic lines after backcrossing for four or more times.
文摘For the two-line hybrid rice system, pol en sterility is regulated by recessive gene that responds to temperature. The recessive gene controlling thermo-sensitive genetic male sterility (TGMS) is expressed when the plants are grown in conditions with higher or lower critical temperatures. To transfer tgms gene(s) control ing TGMS to Thai rice cultivars by backcross breeding method, a male sterile line was used as a donor parent while Thai rice cultivars ChaiNat 1, PathumThani 1, and SuphanBuri 1 were used as recurrent parents. The BC2F2 lines were developed from backcrossing and selfing. Moreover, the simple sequence repeat (SSR) markers were developed for identifying tgms gene and the linked marker was used for assisting selection in backcrossing. The identification lines were confirmed by pol en observation. The results showed the success of introgression of the tgms gene into Thai rice cultivars. These lines will be tested for combining ability and used as female parent in hybrid rice production in Thailand.
基金supported by the National Key Research and Development Program of China(2018YFD0100806,2017YFD0101201 and 2017YFD0102001)the National Natural Science Foundation of China(31871702,31971958 and 31771875)+2 种基金the Fundamental Research Funds for the Central Universities of China(06500136)the Beijing Science&Technology Plan Program(Z191100004019005)。
文摘Sugar metabolism plays an essential role in plant male reproduction. Defects in sugar metabolism during anther and pollen development often result in genic male sterility(GMS). In this review, we summarize the recent progresses of the sugar metabolism-related GMS genes and their roles during plant anther and pollen development, including callose wall and primexine formation, intine development, pollen maturation and starch accumulation, anther dehiscence, and pollen germination and tube growth. We predict 112 putative sugar metabolic GMS genes in maize based on bioinformatics and RNA-seq analyses, and most of them have peak expression patterns during middle or late anther developmental stages.Finally, we outline the potential applications of sugar metabolic GMS genes in crop hybrid breeding and seed production. This review will deepen our understanding on sugar metabolic pathways in controlling pollen development and male fertility in plants.
基金This work was supported by the National Natural Science Foundation of China(39970048)Guangdong Provincial Natural Science Foundation(990707)the Fok Ying Tung Education Foundation(71021).
文摘S-a, S-b and S-c are three loci for F1 pollen sterility in cultivated rice (Oryza sativa L.). Taichung 65 (T65) is all Sj/Sj at these three loci, while its F1 pollen sterile near-isogenic lines, TISL2 (S-b), TISL4 (S-a) and TISL5 (S-c) is Sj/Sj according to their respective sterility locus. Using SSR molecular marker to detect the segregation of the allele Si and Sj in pollen calli population induced from different hybrid F1, which have different pollen sterility locus, showed that the segregation of allele Si and Sj was distorted. The distorted direction of pollen calli population in vitro was not the same as F2 population in vivo. The quantities of pollen callus carrying Sj were much more than that of carrying Siat S-a and S-c locus, the ratio of Si and Sj were 1:4.81 and 1:1.96 respectively. But the opposite tendency was observed at S-b locus, the ratio of Si and Sj being 1:0.35. At the same time, all these results were undisturbed by either culture medium or culture period.
基金supported by the National Natural Science Foundation of China(31771807)the China Agriculture Research System(CARS06-13.5-A04)+1 种基金the National Key Research and Development Program of China(2018YFD1000700 and 2018YFD1000701)the Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences。
文摘Male sterility is a common biological phenomenon in plant kingdom and has been used to generate male-sterile lines, which are important genetic resources for commercial hybrid seed production. Although increasing numbers of male-sterility genes have been identified in rice(Oryza sativa) and Arabidopsis(Arabidopsis thaliana), few male-sterility-related genes have been characterized in foxtail millet(Setaria italica). In this study, we isolated a male-sterile ethyl methanesulfonate-generated mutant in foxtail millet, no pollen 1(sinp1), which displayed abnormal Ubisch bodies, defective pollen exine and complete male sterility. Using bulk segregation analysis, we cloned SiNP1 and confirmed its function with CRISPR/Cas9 genome editing. SiNP1 encoded a putative glucose-methanol-choline oxidoreductase.Subcellular localization showed that the SiNP1 protein was preferentially localized to the endoplasmic reticulum and was predominantly expressed in panicle. Transcriptome analysis revealed that many genes were differentially expressed in the sinp1 mutant, some of which encoded proteins putatively involved in carbohydrate metabolism, fatty acid biosynthesis, and lipid transport and metabolism, which were closely associated with pollen wall development. Metabolome analysis revealed the disturbance of flavonoids metabolism and fatty acid biosynthesis in the mutant. In conclusion, identification of SiNP1 provides a candidate male-sterility gene for heterosis utilization in foxtail millet and gives further insight into the mechanism of pollen reproduction in plants.
基金supported by the National Natural Science Foundation of China(NSFC)(32072541 and 31601729)the National Modern Citrus Industry System(CARS-26)+1 种基金the Hubei Province Science and Technology Plan Project(2023BEB025)Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees(Institute of Fruit and Tea,Hubei Academy of Agricultural Sciences)(GSSZ202302).
文摘Achieving seedlessness in citrus varieties is one of the important objectives of citrus breeding.Male sterility associated with abnormal pollen development is an important factor in seedlessness.However,our understanding of the regulatory mechanism underlying the seedlessness phenotype in citrus is still limited.Here,we determined that the miR159a-DUO1 module played an important role in regulating pollen development in citrus,which further indirectly modulated seed development and fruit size.Both the overexpression of csi-miR159a and the knocking out of DUO1 in Hong Kong kumquat(Fortunella hindsii)resulted in small and seedless fruit phenotypes.Moreover,pollen was severely aborted in both transgenic lines,with arrested pollen mitotic I and abnormal pollen starch metabolism.Through additional cross-pollination experiments,DUO1 was proven to be the key target gene for miR159a to regulate male sterility in citrus.Based on DNA affinity purification sequencing(DAP-seq),RNA-seq,and verified interaction assays,YUC2/YUC6,SS4 and STP8 were identified as downstream target genes of DUO1,those were all positively regulated by DUO1.In transgenic F.hindsii lines,the miR159a-DUO1 module down-regulated the expression of YUC2/YUC6,which decreased indoleacetic acid(IAA)levels and modulated auxin signaling to repress pollen mitotic I.The miR159a-DUO1 module reduced the expression of the starch synthesis gene SS4 and sugar transport gene STP8 to disrupt starch metabolism in pollen.Overall,this work reveals a new mechanism by which the miR159a-DUO1 module regulates pollen development and elucidates the molecular regulatory network underlying male sterility in citrus.
基金supported by the National Natural Science Foundation of China(31771876)the Sichuan Province Science and Technology Program(2021YFYZ0011,2021YFYZ0017).
文摘Callose contributes to many biological processes of higher plants including pollen development,cell plate and vascular tissue formation,as well as regulating the transport function of plasmodesmata.The functions of callose synthase genes in maize have been little studied.We describe a maize male-sterile mutant 39(ms39)characterized by reduced plant height.In this study,we confirmed using CRISPR/Cas9 technology that a mutation in Zm00001d043909(ZmCals12),encoding a callose synthase,is responsible for the male sterility of the ms39 mutant.Compared with male-fertile plants,callose deposition around the dyads and tetrads in ms39 anthers was significantly reduced.Increased cell autophagy observed in ms39 anthers may have been due to the premature programmed cell death of tapetal cells,leading to collapse of the anther wall structure.Disordered glucose metabolism in ms39 may have intensified autophagy in anthers.Evaluation of the ms39 gene on maize heterosis by paired-crossed experiment with 11 maize inbred lines indicated that ms39 can be used for maize hybrid seed production.