The cross-layer resource allocation problem in wireless multi-hop networks(WMHNs)has been extensively studied in the past few years.Most of these studies assume that every node has the perfect channel state informatio...The cross-layer resource allocation problem in wireless multi-hop networks(WMHNs)has been extensively studied in the past few years.Most of these studies assume that every node has the perfect channel state information(CSI)of other nodes.In practical settings,however,the networks are generally dynamic and CSI usually becomes outdated when it is used,due to the time-variant channel and feedback delay.To deal with this issue,we study the cross-layer resource allocation problem in dynamic WMHNs with outdated CSI under channel conditions where there is correlation between the outdated CSI and current CSI.Two major contributions are made in this work:(1)a closed-form expression of conditional average capacity is derived under the signal-to-interferenceplus-noise ratio(SINR)model;(2)a joint optimization problem of congestion control,power control,and channel allocation in the context of outdated CSI is formulated and solved in both centralized and distributed manners.Simulation results show that the network utility can be improved significantly using our proposed algorithm.展开更多
Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superp...Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superposition waveforms consisting of multi-sinusoidal signals for wireless energy transfer(WET)and orthogonal-frequency-divisionmultiplexing(OFDM)signals for wireless data transfer(WDT).The outdated channel state information(CSI)in aging channels is employed by the transmitter to shape IDET waveforms.With the constraints of transmission power and WDT requirement,the amplitudes and phases of the IDET waveform at the transmitter and the power splitter at the receiver are jointly optimised for maximising the average directcurrent(DC)among a limited number of transmission frames with the existence of carrier-frequencyoffset(CFO).For the amplitude optimisation,the original non-convex problem can be transformed into a reversed geometric programming problem,then it can be effectively solved with existing tools.As for the phase optimisation,the artificial bee colony(ABC)algorithm is invoked in order to deal with the nonconvexity.Iteration between the amplitude optimisation and phase optimisation yields our joint design.Numerical results demonstrate the advantage of our joint design for the IDET waveform shaping with the existence of the CFO and the outdated CSI.展开更多
The performance of multiuser multiple-input-multiple-output (MIMO) downlink systems with block diagonalization (BD) depends on the accuracy of the channel state information (CSI) available at the trans- mitter a...The performance of multiuser multiple-input-multiple-output (MIMO) downlink systems with block diagonalization (BD) depends on the accuracy of the channel state information (CSI) available at the trans- mitter and the receiver. In time-varying channels, the CSI available at the transmitter (CSIT) is always out-dated due to an inherent time delay between the uplink channel estimation and the downlink data transmission in time division duplexing (TDD) systems. This leads to a drastic degradation of system capacity. This paper first analyzes the effect of the outdated CSIT on multiuser MIMO downlink systems using the BD method and then proposes two linear processing methods, BD precoding with user selection and scheduling at the transmitter and total minimum mean squared error (MMSE) decoding at the receiver (TBDUSS-RTMMSE) and BD preceding at the transmitter with partial MMSE decoding at the receiver (TBD-RPMMSE), to mitigate the interference among data streams and users. Analysis and simulation results show that these methods can effectively reduce the impairment of the outdated CSIT to increase the system sum capacity in a suitable time delay region of the CSIT.展开更多
基金supported by the National Natural Science Foundation of China(No.61340035)
文摘The cross-layer resource allocation problem in wireless multi-hop networks(WMHNs)has been extensively studied in the past few years.Most of these studies assume that every node has the perfect channel state information(CSI)of other nodes.In practical settings,however,the networks are generally dynamic and CSI usually becomes outdated when it is used,due to the time-variant channel and feedback delay.To deal with this issue,we study the cross-layer resource allocation problem in dynamic WMHNs with outdated CSI under channel conditions where there is correlation between the outdated CSI and current CSI.Two major contributions are made in this work:(1)a closed-form expression of conditional average capacity is derived under the signal-to-interferenceplus-noise ratio(SINR)model;(2)a joint optimization problem of congestion control,power control,and channel allocation in the context of outdated CSI is formulated and solved in both centralized and distributed manners.Simulation results show that the network utility can be improved significantly using our proposed algorithm.
基金financial support of Natural Science Foundation of China(No.61971102,62132004)MOST Major Research and Development Project(No.2021YFB2900204)+1 种基金Sichuan Science and Technology Program(No.2022YFH0022)Key Research and Development Program of Zhejiang Province(No.2022C01093)。
文摘Integrated data and energy transfer(IDET)is capable of simultaneously delivering on-demand data and energy to low-power Internet of Everything(Io E)devices.We propose a multi-carrier IDET transceiver relying on superposition waveforms consisting of multi-sinusoidal signals for wireless energy transfer(WET)and orthogonal-frequency-divisionmultiplexing(OFDM)signals for wireless data transfer(WDT).The outdated channel state information(CSI)in aging channels is employed by the transmitter to shape IDET waveforms.With the constraints of transmission power and WDT requirement,the amplitudes and phases of the IDET waveform at the transmitter and the power splitter at the receiver are jointly optimised for maximising the average directcurrent(DC)among a limited number of transmission frames with the existence of carrier-frequencyoffset(CFO).For the amplitude optimisation,the original non-convex problem can be transformed into a reversed geometric programming problem,then it can be effectively solved with existing tools.As for the phase optimisation,the artificial bee colony(ABC)algorithm is invoked in order to deal with the nonconvexity.Iteration between the amplitude optimisation and phase optimisation yields our joint design.Numerical results demonstrate the advantage of our joint design for the IDET waveform shaping with the existence of the CFO and the outdated CSI.
基金Supported by the National High-Tech Research and Development (863) Program of China (No. 2006AA01Z282)the Tsinghua-Qualcomm Project
文摘The performance of multiuser multiple-input-multiple-output (MIMO) downlink systems with block diagonalization (BD) depends on the accuracy of the channel state information (CSI) available at the trans- mitter and the receiver. In time-varying channels, the CSI available at the transmitter (CSIT) is always out-dated due to an inherent time delay between the uplink channel estimation and the downlink data transmission in time division duplexing (TDD) systems. This leads to a drastic degradation of system capacity. This paper first analyzes the effect of the outdated CSIT on multiuser MIMO downlink systems using the BD method and then proposes two linear processing methods, BD precoding with user selection and scheduling at the transmitter and total minimum mean squared error (MMSE) decoding at the receiver (TBDUSS-RTMMSE) and BD preceding at the transmitter with partial MMSE decoding at the receiver (TBD-RPMMSE), to mitigate the interference among data streams and users. Analysis and simulation results show that these methods can effectively reduce the impairment of the outdated CSIT to increase the system sum capacity in a suitable time delay region of the CSIT.