Logit regression analysis is widely applied in scientific studies and laboratory experiments, where skewed observations on a data set are often encountered. A number of problems with this method, for example, oudiers ...Logit regression analysis is widely applied in scientific studies and laboratory experiments, where skewed observations on a data set are often encountered. A number of problems with this method, for example, oudiers and influential observations, can cause overdispersion when a model is fitted. In this study a systematic statistical approach, including the plotting of several indices is used to diagnose the lack-of-fit of a logistic regression model. The outliers and influential observations on data from laboratory experiments are then detected. Specifically we take account of the interaction of an internal sohtary wave (ISW) with an obstacle, i.e., an underwater ridge, and also analyze the effects of the ridge height, the lower layer water depth, and the potential energy on the amplitude-based transmission rate of the ISW. As concluded, the goodness-of-fit of the revised logit regression model is better than that of the model without this approach.展开更多
基金Science Council of Taiwan Province under Grant Nos.NSC 96-2628-E-366-004-MY2 and 96-2628-E-132-001-MY2
文摘Logit regression analysis is widely applied in scientific studies and laboratory experiments, where skewed observations on a data set are often encountered. A number of problems with this method, for example, oudiers and influential observations, can cause overdispersion when a model is fitted. In this study a systematic statistical approach, including the plotting of several indices is used to diagnose the lack-of-fit of a logistic regression model. The outliers and influential observations on data from laboratory experiments are then detected. Specifically we take account of the interaction of an internal sohtary wave (ISW) with an obstacle, i.e., an underwater ridge, and also analyze the effects of the ridge height, the lower layer water depth, and the potential energy on the amplitude-based transmission rate of the ISW. As concluded, the goodness-of-fit of the revised logit regression model is better than that of the model without this approach.