When fault occurs on cross-coupling autotransformer(AT)power supply traction network,the up-line and down-line feeder circuit breakers in the traction substation trip at the same time without selectivity,which leads t...When fault occurs on cross-coupling autotransformer(AT)power supply traction network,the up-line and down-line feeder circuit breakers in the traction substation trip at the same time without selectivity,which leads to an extended power failure.Based on equivalent circuit and Kirchhoff’s current law,the feeder current characteristic in the substation,AT station and sectioning post when T-R fault,F-R fault,and T-F fault occur are analyzed and their expressions are obtained.When the traction power supply system is equipped with wide-area protection measurement and control system,the feeder protection device in each station collects the feeder currents in other two stations through the wide-area protection channel and a wide-area current differential protection scheme based on the feeder current characteristic is proposed.When a short-circuit fault occurs in the power supply arm,all the feeder protection devices in each station receive the feeder currents with time stamp in other two stations.After data synchronous processing and logic judgment,the fault line of the power supply arm can be identified and isolated quickly.The simulation result based on MATLAB/Simulink shows that the power supply arm protection scheme based on wide-area current differential has good fault discrimination ability under different fault positions,transition resistances,and fault types.The verification of measured data shows that the novel protection scheme will not be affected by the special working conditions of the electrical multiple unit(EMU),and reliability,selectivity,and rapidity of relay protection are all improved.展开更多
This paper outlines the significance of enhancing the instantaneous protection reliability of low voltage circuit breakers and describes their main failure modes. The instantaneous failure mechanism of low voltage cir...This paper outlines the significance of enhancing the instantaneous protection reliability of low voltage circuit breakers and describes their main failure modes. The instantaneous failure mechanism of low voltage circuit breakers was analyzed so that measures to improve instantaneous protection reliability can be determined. Furthermore, the theory of the instantaneous characteristics calibration device for low voltage circuit breakers and the method of eliminating the non-periodic component of test current are given in detail. Finally, the test results are presented.展开更多
This paper analyzes a DFIG (doubly fed induction generator) WT (wind turbine) fault current after a symmetrical network voltage dip. The goal is to identify the factors determining how fast the first zero crossing...This paper analyzes a DFIG (doubly fed induction generator) WT (wind turbine) fault current after a symmetrical network voltage dip. The goal is to identify the factors determining how fast the first zero crossings of the fault current occur. This is an important subject because the ftmdamental property of the CB (circuit breaker) is that it breaks the current when the current is very near zero. The study was conducted using a hardware-in-the-loop test environment constructed using two real time simulators (dSPACE and RTDS) and a commercial protection relay. It is found that the reactive current injection during a voltage dip demanded by the grid codes enhances the operation of the WT protection because the zero crossings of the currents through CB are attained earlier. In addition, the size of the crowbar resistance has a significant influence on the zero crossings.展开更多
A crowbar impulse current circuit for testing the switch-type surge protective device (SPD) is presented. The crowbar circuit consists of a computer control circuit, a trigger voltage pulse generator, a main dischar...A crowbar impulse current circuit for testing the switch-type surge protective device (SPD) is presented. The crowbar circuit consists of a computer control circuit, a trigger voltage pulse generator, a main discharging switch, and a crowbar pseudospark switch. The active trigger technology was studied in the crowbar impulse current circuit. The circuit monitors the main discharging current and generates a trigger signal at a proper time for the crowbar pseudospark switch operation. The trigger characteristics of the main discharge switch and the crowbar pseu- dospark switch were investigated. By monitoring the preset applied capacitor voltage, the gap distance of the main discharging switch could be adjusted to ensure a discharging delay time less than 2 μs. Equipped with a surface ttashover trigger device made of high relative perimittivity dielectric material BaTiO3 (εr = 3460), the discharge delay time of the crowbar pseudospark switch is less than 85 ns, and the minimum operating voltage is less than 1% of its self-breakdown voltage. With a storage capacitor of 9 μF , an inductor of 18 μH and a crowbar pseudospark switch, a load of 30 mΩ and an applied capacitor voltage of 40 kV, an impulse current waveform of maximum 25 kA was generated with a rise time and time to half peak value of 17.2 μs and 336μs respectively.展开更多
High quality electricity services are the prime objectives in the modern power systems around the world. One of the main players to achieve this is the protection of the system which needs to be fast, reliable and cos...High quality electricity services are the prime objectives in the modern power systems around the world. One of the main players to achieve this is the protection of the system which needs to be fast, reliable and cost effective. The study about the protection of the Low Voltage (LV) CIGRE distribution grid and networks like this has been proposed in this paper. The main objective of this paper is to develop protection against short circuit faults which might appear anywhere in the network. The protection of the power networks that comprises of renewable energy generation units is complicated because of the bidirectional flow of the current and is a challenge for the protection engineers. The selection of the protection devices in this paper is made to protect the network against faults in grid connected and island mode of operation. Ultra-fast fuses are proposed in order to protect the inverters used for Photovoltaic (PV) and battery applications. The disconnection of the PV solar panels when in island mode is made by proposing switch disconnecting devices. ABB is currently using these kinds of disconnection devices for the purpose of protecting solar panels against over voltages in the case of islanding. The over speed protection of the existing Wind Turbine Generator (WTG) in the CIGRE network in case of grid loss is also proposed in this paper.展开更多
To study the effects of wind generators on distribution system protection,the short-circuit current(SCC) characteristics of wind generators is important.Although there are many researches on the issue,a clear agreemen...To study the effects of wind generators on distribution system protection,the short-circuit current(SCC) characteristics of wind generators is important.Although there are many researches on the issue,a clear agreement has not been reached so far.The SCC characteristics for different wind generators are studied.PSCAD simulation is performed in the same system integrated with different kinds of wind generators,and their results are compared with those reported in IEEE papers.The detection possibility by overcurrent relay(OCR)is discussed based on the simulation results.展开更多
A big step forward to improve power system monitoring and performance, continued load growth without a corresponding increase in transmission resources has resulted in reduced operational margins for many power system...A big step forward to improve power system monitoring and performance, continued load growth without a corresponding increase in transmission resources has resulted in reduced operational margins for many power systems worldwide and has led to operation of power systems closer to their stability limits and to power exchange in new patterns. These issues, as well as the on-going worldwide trend towards deregulation of the entire industry on the one hand and the increased need for accurate and better network monitoring on the other hand, force power utilities exposed to this pressure to demand new solutions for wide area monitoring, protection and control. Wide-area monitoring, protection, and control require communicating the specific-node information to a remote station but all information should be time synchronized so that to neutralize the time difference between information. It gives a complete simultaneous snap shot of the power system. The conventional system is not able to satisfy the time-synchronized requirement of power system. Phasor Measurement Unit (PMU) is enabler of time-synchronized measurement, it communicate the synchronized local information to remote station.展开更多
基金supported by the Natural Science Foundation of Sichuan Province(No.2022NSFSC0405).
文摘When fault occurs on cross-coupling autotransformer(AT)power supply traction network,the up-line and down-line feeder circuit breakers in the traction substation trip at the same time without selectivity,which leads to an extended power failure.Based on equivalent circuit and Kirchhoff’s current law,the feeder current characteristic in the substation,AT station and sectioning post when T-R fault,F-R fault,and T-F fault occur are analyzed and their expressions are obtained.When the traction power supply system is equipped with wide-area protection measurement and control system,the feeder protection device in each station collects the feeder currents in other two stations through the wide-area protection channel and a wide-area current differential protection scheme based on the feeder current characteristic is proposed.When a short-circuit fault occurs in the power supply arm,all the feeder protection devices in each station receive the feeder currents with time stamp in other two stations.After data synchronous processing and logic judgment,the fault line of the power supply arm can be identified and isolated quickly.The simulation result based on MATLAB/Simulink shows that the power supply arm protection scheme based on wide-area current differential has good fault discrimination ability under different fault positions,transition resistances,and fault types.The verification of measured data shows that the novel protection scheme will not be affected by the special working conditions of the electrical multiple unit(EMU),and reliability,selectivity,and rapidity of relay protection are all improved.
基金Project (No. 043804411) supported by the Tianjin Natural ScienceFoundation, China
文摘This paper outlines the significance of enhancing the instantaneous protection reliability of low voltage circuit breakers and describes their main failure modes. The instantaneous failure mechanism of low voltage circuit breakers was analyzed so that measures to improve instantaneous protection reliability can be determined. Furthermore, the theory of the instantaneous characteristics calibration device for low voltage circuit breakers and the method of eliminating the non-periodic component of test current are given in detail. Finally, the test results are presented.
文摘This paper analyzes a DFIG (doubly fed induction generator) WT (wind turbine) fault current after a symmetrical network voltage dip. The goal is to identify the factors determining how fast the first zero crossings of the fault current occur. This is an important subject because the ftmdamental property of the CB (circuit breaker) is that it breaks the current when the current is very near zero. The study was conducted using a hardware-in-the-loop test environment constructed using two real time simulators (dSPACE and RTDS) and a commercial protection relay. It is found that the reactive current injection during a voltage dip demanded by the grid codes enhances the operation of the WT protection because the zero crossings of the currents through CB are attained earlier. In addition, the size of the crowbar resistance has a significant influence on the zero crossings.
文摘A crowbar impulse current circuit for testing the switch-type surge protective device (SPD) is presented. The crowbar circuit consists of a computer control circuit, a trigger voltage pulse generator, a main discharging switch, and a crowbar pseudospark switch. The active trigger technology was studied in the crowbar impulse current circuit. The circuit monitors the main discharging current and generates a trigger signal at a proper time for the crowbar pseudospark switch operation. The trigger characteristics of the main discharge switch and the crowbar pseu- dospark switch were investigated. By monitoring the preset applied capacitor voltage, the gap distance of the main discharging switch could be adjusted to ensure a discharging delay time less than 2 μs. Equipped with a surface ttashover trigger device made of high relative perimittivity dielectric material BaTiO3 (εr = 3460), the discharge delay time of the crowbar pseudospark switch is less than 85 ns, and the minimum operating voltage is less than 1% of its self-breakdown voltage. With a storage capacitor of 9 μF , an inductor of 18 μH and a crowbar pseudospark switch, a load of 30 mΩ and an applied capacitor voltage of 40 kV, an impulse current waveform of maximum 25 kA was generated with a rise time and time to half peak value of 17.2 μs and 336μs respectively.
文摘High quality electricity services are the prime objectives in the modern power systems around the world. One of the main players to achieve this is the protection of the system which needs to be fast, reliable and cost effective. The study about the protection of the Low Voltage (LV) CIGRE distribution grid and networks like this has been proposed in this paper. The main objective of this paper is to develop protection against short circuit faults which might appear anywhere in the network. The protection of the power networks that comprises of renewable energy generation units is complicated because of the bidirectional flow of the current and is a challenge for the protection engineers. The selection of the protection devices in this paper is made to protect the network against faults in grid connected and island mode of operation. Ultra-fast fuses are proposed in order to protect the inverters used for Photovoltaic (PV) and battery applications. The disconnection of the PV solar panels when in island mode is made by proposing switch disconnecting devices. ABB is currently using these kinds of disconnection devices for the purpose of protecting solar panels against over voltages in the case of islanding. The over speed protection of the existing Wind Turbine Generator (WTG) in the CIGRE network in case of grid loss is also proposed in this paper.
基金supported by the Power Generation & Electricity Delivery of the Korea Institute of Energy Technology and Planning(KETEP)grant funded by the Korea Government Ministry of Knowledge Economy(No.2009T100200067)
文摘To study the effects of wind generators on distribution system protection,the short-circuit current(SCC) characteristics of wind generators is important.Although there are many researches on the issue,a clear agreement has not been reached so far.The SCC characteristics for different wind generators are studied.PSCAD simulation is performed in the same system integrated with different kinds of wind generators,and their results are compared with those reported in IEEE papers.The detection possibility by overcurrent relay(OCR)is discussed based on the simulation results.
文摘A big step forward to improve power system monitoring and performance, continued load growth without a corresponding increase in transmission resources has resulted in reduced operational margins for many power systems worldwide and has led to operation of power systems closer to their stability limits and to power exchange in new patterns. These issues, as well as the on-going worldwide trend towards deregulation of the entire industry on the one hand and the increased need for accurate and better network monitoring on the other hand, force power utilities exposed to this pressure to demand new solutions for wide area monitoring, protection and control. Wide-area monitoring, protection, and control require communicating the specific-node information to a remote station but all information should be time synchronized so that to neutralize the time difference between information. It gives a complete simultaneous snap shot of the power system. The conventional system is not able to satisfy the time-synchronized requirement of power system. Phasor Measurement Unit (PMU) is enabler of time-synchronized measurement, it communicate the synchronized local information to remote station.