调频广播主要在甚高频(Very High Frequency,VHF)频段传输。VHF频段具有传播距离远、穿透力强、信号稳定等优势,但易受多种因素影响。基于此,首先介绍VHF频段的基本特点和调频广播信号的技术参数,其次介绍VHF频段调频广播信号传播的测...调频广播主要在甚高频(Very High Frequency,VHF)频段传输。VHF频段具有传播距离远、穿透力强、信号稳定等优势,但易受多种因素影响。基于此,首先介绍VHF频段的基本特点和调频广播信号的技术参数,其次介绍VHF频段调频广播信号传播的测量过程,最后从天线的设计和布置、调制、编码技术的应用等方面,提出改善VHF频段调频广播覆盖效果的策略。展开更多
已有的针对海上VHF/UHF(Very High Frequency/Vltra High Frquency)频段信道环境的研究,在电波传播特性和底噪特性方面缺少试验数据支撑.本文在VHF/UHF频段上做了一系列海上通信试验,基于试验数据,分析了传统电波传播模型对海上视距、...已有的针对海上VHF/UHF(Very High Frequency/Vltra High Frquency)频段信道环境的研究,在电波传播特性和底噪特性方面缺少试验数据支撑.本文在VHF/UHF频段上做了一系列海上通信试验,基于试验数据,分析了传统电波传播模型对海上视距、超视距、视距超视距临界等传播路径的适用性.同时本文提出了空时二维海上频率选择性信道分析方法,从空间、时间二维视角下定量描述了海上无线信道演变现象,对空时频率迁移和空时频率衰变的概念做了定义.结论可用于海上电波传播建模和异常现象分析.展开更多
This work is an attempt to critically analyze the existing theoretical models of the impact of earthquake preparation processes on the state of the earth’s atmosphere and ionosphere in the zone of growing seismic act...This work is an attempt to critically analyze the existing theoretical models of the impact of earthquake preparation processes on the state of the earth’s atmosphere and ionosphere in the zone of growing seismic activity, as well as the mechanisms of formation and transfer of disturbances in various media over the earthquake center. The determining factor (criterion) of the analysis is the degree of compliance of the simulation results with experimental data obtained at various phases of earthquake development by direct and remote diagnostic methods using ground and aerospace technologies. The key role is played by the model’s compliance with the results of measuring electric fields and currents in the near-ground atmosphere and ionosphere, small-scale ionospheric inhomogeneities and correlated field-aligned currents and electromagnetic ULF/ELF emissions. A full-fledged model should also explain the origin of such seismic related phenomena as the generation in the troposphere and over-horizon propagation of pulsed VHF radiation, thermal effects and associated IR emissions as well as the modification of plasma distribution in the D, E and F layers of the ionosphere. The use of this criterion in the analysis allowed us to identify a theoretical model that most fully describes the totality of the above-mentioned experimental data within a single physical mechanism. This is an electrodynamic model based on the perturbation of the conductivity current in the global atmosphere—ionosphere electric circuit due to the injection of charged aerosols into the atmosphere during the preparation and development of an earthquake. The present paper describes this model and the formation mechanisms of related phenomena in the atmosphere and ionosphere, which can be considered as short-term precursors to earthquakes.展开更多
Dissemination of information to citizens is a relevant component of governance. Expectedly, viewers tuned to broadcast stations within and outside their localities, expecting their receivers to faithfully reproduce th...Dissemination of information to citizens is a relevant component of governance. Expectedly, viewers tuned to broadcast stations within and outside their localities, expecting their receivers to faithfully reproduce the exact features of the transmitted signal. Akpabuyo is a dense forest zone near the creeks leading to the Atlantic ocean in Cross River State, Nigeria. The location has distinct environmental characteristics that made Akpabuyo Area Council, a challenging location to propagate electromagnetic waves;and therefore recipe for further investigation. Radio frequency analyzer, with 24 channels spectrum, ranging between 46 - 870 MHz (model: RO.VE.R.-“DLM3-T”) was deployed to capture signals from terrestrial television stations (TV). CATV measured signal of TV stations in dB, dBμV and dBmV. Its frequency ranged from 40 - 860 MHz;while varying from channel 1 to channel 69. Measurements taken from Akpabuyo L.G.A. showed the following results: the signal strength received from VHF Channel 11 ranged from 20 dBμV to 49 dBμV. From recorded empirical statistics from the study, 50% of the area received signal from this station above 30 dBμV, while other regions had signals below this value;representing the fringe zone of the frequency. The results obtained from the study relatively showed acceptance with Egli’s model. The study recorded a steady fluctuation between 17 dBμV and 19 dBμV from both propagating stations. However, Channel 27 signal at 519 MHz, had very weak signal coverage in Akpabuyo Local Government Area;with signal strength dropped to as low as 13 dB in many parts of the rural area. The study discovered that the state’s broadcasting stations, both at UHF and VHF channels did not transmit successfully across this densely forest (rural) location. Remedial measures such as installing Repeater stations at different locations as signal booster were recommended.展开更多
文摘调频广播主要在甚高频(Very High Frequency,VHF)频段传输。VHF频段具有传播距离远、穿透力强、信号稳定等优势,但易受多种因素影响。基于此,首先介绍VHF频段的基本特点和调频广播信号的技术参数,其次介绍VHF频段调频广播信号传播的测量过程,最后从天线的设计和布置、调制、编码技术的应用等方面,提出改善VHF频段调频广播覆盖效果的策略。
文摘已有的针对海上VHF/UHF(Very High Frequency/Vltra High Frquency)频段信道环境的研究,在电波传播特性和底噪特性方面缺少试验数据支撑.本文在VHF/UHF频段上做了一系列海上通信试验,基于试验数据,分析了传统电波传播模型对海上视距、超视距、视距超视距临界等传播路径的适用性.同时本文提出了空时二维海上频率选择性信道分析方法,从空间、时间二维视角下定量描述了海上无线信道演变现象,对空时频率迁移和空时频率衰变的概念做了定义.结论可用于海上电波传播建模和异常现象分析.
文摘This work is an attempt to critically analyze the existing theoretical models of the impact of earthquake preparation processes on the state of the earth’s atmosphere and ionosphere in the zone of growing seismic activity, as well as the mechanisms of formation and transfer of disturbances in various media over the earthquake center. The determining factor (criterion) of the analysis is the degree of compliance of the simulation results with experimental data obtained at various phases of earthquake development by direct and remote diagnostic methods using ground and aerospace technologies. The key role is played by the model’s compliance with the results of measuring electric fields and currents in the near-ground atmosphere and ionosphere, small-scale ionospheric inhomogeneities and correlated field-aligned currents and electromagnetic ULF/ELF emissions. A full-fledged model should also explain the origin of such seismic related phenomena as the generation in the troposphere and over-horizon propagation of pulsed VHF radiation, thermal effects and associated IR emissions as well as the modification of plasma distribution in the D, E and F layers of the ionosphere. The use of this criterion in the analysis allowed us to identify a theoretical model that most fully describes the totality of the above-mentioned experimental data within a single physical mechanism. This is an electrodynamic model based on the perturbation of the conductivity current in the global atmosphere—ionosphere electric circuit due to the injection of charged aerosols into the atmosphere during the preparation and development of an earthquake. The present paper describes this model and the formation mechanisms of related phenomena in the atmosphere and ionosphere, which can be considered as short-term precursors to earthquakes.
文摘Dissemination of information to citizens is a relevant component of governance. Expectedly, viewers tuned to broadcast stations within and outside their localities, expecting their receivers to faithfully reproduce the exact features of the transmitted signal. Akpabuyo is a dense forest zone near the creeks leading to the Atlantic ocean in Cross River State, Nigeria. The location has distinct environmental characteristics that made Akpabuyo Area Council, a challenging location to propagate electromagnetic waves;and therefore recipe for further investigation. Radio frequency analyzer, with 24 channels spectrum, ranging between 46 - 870 MHz (model: RO.VE.R.-“DLM3-T”) was deployed to capture signals from terrestrial television stations (TV). CATV measured signal of TV stations in dB, dBμV and dBmV. Its frequency ranged from 40 - 860 MHz;while varying from channel 1 to channel 69. Measurements taken from Akpabuyo L.G.A. showed the following results: the signal strength received from VHF Channel 11 ranged from 20 dBμV to 49 dBμV. From recorded empirical statistics from the study, 50% of the area received signal from this station above 30 dBμV, while other regions had signals below this value;representing the fringe zone of the frequency. The results obtained from the study relatively showed acceptance with Egli’s model. The study recorded a steady fluctuation between 17 dBμV and 19 dBμV from both propagating stations. However, Channel 27 signal at 519 MHz, had very weak signal coverage in Akpabuyo Local Government Area;with signal strength dropped to as low as 13 dB in many parts of the rural area. The study discovered that the state’s broadcasting stations, both at UHF and VHF channels did not transmit successfully across this densely forest (rural) location. Remedial measures such as installing Repeater stations at different locations as signal booster were recommended.