Vertical infusion(self-emptying)bags used for Intravenous infusion are typically obtained by moulding a soft envelope of polypropylene.In normal conditions a continuous flow of liquid can be obtained with no need to u...Vertical infusion(self-emptying)bags used for Intravenous infusion are typically obtained by moulding a soft envelope of polypropylene.In normal conditions a continuous flow of liquid can be obtained with no need to use a pump.In the present study,the relationship between air pressure effects and the drug drip rate have been investigated experimentally and numerically.After determining relevant experimental data about the descending height of liquid level,the dropping speed and pressure,the ordinary least square method and MATLAB have been used to reconstruct the related variation and interrelation laws.Numerical simulations have been performed to determine the best gas-liquid volume ratio and improve the overall performances of these bags.According to these results,that the biggest effect on the drip rate is produced by the diameters of the used needles.展开更多
Performance of Photovoltaic-double skin façade(Photovoltaic-DSF)system in summer has been critical.Owing to high solar ingress,cooling requirement of a building significantly increases.Photovoltaic-DSF system pro...Performance of Photovoltaic-double skin façade(Photovoltaic-DSF)system in summer has been critical.Owing to high solar ingress,cooling requirement of a building significantly increases.Photovoltaic-DSF system provides a shield and controls the heat gain through fenestration in the interior spaces.In the present article,mathematical correlations are developed for energy characterization of forced-ventilated Photovoltaic-DSF system in India’s hot summer zone i.e.Jaipur.The Photovoltaic-DSF system has been installed and monitored for Jaipur’s summer months(May to July).L25 Orthogonal array of design parameters(air cavity thickness,air velocity,and PV panel’s transparency)and their respective levels have been developed using Taguchi design to perform experiments.Based on experimental results,multiple linear regression has been used to forecast solar heat gain coefficient,PVs electrical power and daylighting illuminance indoors as function of design factors.The statistical significance of mathematical relationships is sorted by variance analysis,which is found to be in good accord with field measurements(R2>0.90).The proposed correlations are pragmatic in designing Photovoltaic-DSF systems for hot summer conditions.The Photovoltaic-DSF system with 30%transmittance and air velocity of 5 metres per second in 200 mm air cavity thickness achieved maximum energy performance in hot summers.展开更多
In the present study, a micro-scale solar organic Rankine cycle power generation system was developed. The system comprises of a solar collection system based on compound cylindrical Fresnel lens concentrator and an o...In the present study, a micro-scale solar organic Rankine cycle power generation system was developed. The system comprises of a solar collection system based on compound cylindrical Fresnel lens concentrator and an organic Rankine cycle power generation system integrated with a scroll expander. YD320 and R245 fa were used as the heat transfer fluid and the working fluid, respectively. The effects of the evaporation pressure, the degree of superheat, and the mass flow rate of the working fluid were analyzed to evaluate the solar collection efficiency, the electric power output, the thermal efficiency and exergy efficiency of the system. The results illustrate that both the increasing evaporation pressure and decreasing superheat degree have positive impacts on solar collection efficiency. The electric power increases as the evaporation pressure increases, while the thermal efficiency and the exergy efficiency decrease. However, the system overall efficiency decreases slowly due to the increase of solar collection efficiency. The electric power increases with the increment of the working fluid mass flow rate. The increasing mass flow rate has no visible impact on the thermal and exergy efficiencies of organic Rankine cycle subsystem, whereas a slightly increase of the thermal and exergy efficiencies of the integrated system. The electric power decreases with the increase of the superheat degree, whereas the thermal and the exergy efficiencies of the system increase. The system works more suitably with a higher degree of superheat for the small mass flow rate condition.展开更多
基金This article belongs to the project of“The University Synergy Innovation Program of Anhui Province(GXXT-2019-004)”“Teaching Research Project of Anhui Education Department(2019jyxm0229)”.
文摘Vertical infusion(self-emptying)bags used for Intravenous infusion are typically obtained by moulding a soft envelope of polypropylene.In normal conditions a continuous flow of liquid can be obtained with no need to use a pump.In the present study,the relationship between air pressure effects and the drug drip rate have been investigated experimentally and numerically.After determining relevant experimental data about the descending height of liquid level,the dropping speed and pressure,the ordinary least square method and MATLAB have been used to reconstruct the related variation and interrelation laws.Numerical simulations have been performed to determine the best gas-liquid volume ratio and improve the overall performances of these bags.According to these results,that the biggest effect on the drip rate is produced by the diameters of the used needles.
基金supported by a DST project named“Development and performance analysis of Semi-Transparent Solar Photovoltaic double pane Window/Facade system”funded by the Department of Science and Technology,Government of India (TMD/CERI/BEE/2016/070(G)).
文摘Performance of Photovoltaic-double skin façade(Photovoltaic-DSF)system in summer has been critical.Owing to high solar ingress,cooling requirement of a building significantly increases.Photovoltaic-DSF system provides a shield and controls the heat gain through fenestration in the interior spaces.In the present article,mathematical correlations are developed for energy characterization of forced-ventilated Photovoltaic-DSF system in India’s hot summer zone i.e.Jaipur.The Photovoltaic-DSF system has been installed and monitored for Jaipur’s summer months(May to July).L25 Orthogonal array of design parameters(air cavity thickness,air velocity,and PV panel’s transparency)and their respective levels have been developed using Taguchi design to perform experiments.Based on experimental results,multiple linear regression has been used to forecast solar heat gain coefficient,PVs electrical power and daylighting illuminance indoors as function of design factors.The statistical significance of mathematical relationships is sorted by variance analysis,which is found to be in good accord with field measurements(R2>0.90).The proposed correlations are pragmatic in designing Photovoltaic-DSF systems for hot summer conditions.The Photovoltaic-DSF system with 30%transmittance and air velocity of 5 metres per second in 200 mm air cavity thickness achieved maximum energy performance in hot summers.
基金supported by the Beijing Municipal Natural Science Foundation,China(Grant No.3194057)
文摘In the present study, a micro-scale solar organic Rankine cycle power generation system was developed. The system comprises of a solar collection system based on compound cylindrical Fresnel lens concentrator and an organic Rankine cycle power generation system integrated with a scroll expander. YD320 and R245 fa were used as the heat transfer fluid and the working fluid, respectively. The effects of the evaporation pressure, the degree of superheat, and the mass flow rate of the working fluid were analyzed to evaluate the solar collection efficiency, the electric power output, the thermal efficiency and exergy efficiency of the system. The results illustrate that both the increasing evaporation pressure and decreasing superheat degree have positive impacts on solar collection efficiency. The electric power increases as the evaporation pressure increases, while the thermal efficiency and the exergy efficiency decrease. However, the system overall efficiency decreases slowly due to the increase of solar collection efficiency. The electric power increases with the increment of the working fluid mass flow rate. The increasing mass flow rate has no visible impact on the thermal and exergy efficiencies of organic Rankine cycle subsystem, whereas a slightly increase of the thermal and exergy efficiencies of the integrated system. The electric power decreases with the increase of the superheat degree, whereas the thermal and the exergy efficiencies of the system increase. The system works more suitably with a higher degree of superheat for the small mass flow rate condition.