在基于深度学习的三维点云语义分割算法中,为了加强提取局部特征细粒度能力和学习不同局部邻域之间的长程依赖性,提出一种基于注意力机制和全局特征优化的神经网络。首先,通过加性注意力的形式设计单通道注意力(SCA)模块和点注意力(PA)...在基于深度学习的三维点云语义分割算法中,为了加强提取局部特征细粒度能力和学习不同局部邻域之间的长程依赖性,提出一种基于注意力机制和全局特征优化的神经网络。首先,通过加性注意力的形式设计单通道注意力(SCA)模块和点注意力(PA)模块,前者通过自适应调节单通道中各点特征加强对局部特征的分辨能力,后者通过调节单点特征向量之间的重要程度抑制无用特征并减少特征冗余;其次,加入全局特征聚合(GFA)模块,聚合各局部邻域特征,以捕获全局上下文信息,从而提高语义分割精度。实验结果表明,在点云数据集S3DIS上,所提网络的平均交并比(mIoU)相较于RandLA-Net(Random sampling and an effective Local feature Aggregator Network)提升了1.8个百分点,分割性能良好,具有较好的适应性。展开更多
真实场景点云不仅具有点云的空间几何信息,还具有三维物体的颜色信息,现有的网络无法有效利用真实场景的局部特征以及空间几何特征信息,因此提出了一种双通道特征融合的真实场景点云语义分割方法DCFNet(dual-channel feature fusion of ...真实场景点云不仅具有点云的空间几何信息,还具有三维物体的颜色信息,现有的网络无法有效利用真实场景的局部特征以及空间几何特征信息,因此提出了一种双通道特征融合的真实场景点云语义分割方法DCFNet(dual-channel feature fusion of real scene for point cloud semantic segmentation)可用于不同场景下的室内外场景语义分割。更具体地说,为了解决不能充分提取真实场景点云颜色信息的问题,该方法采用上下两个输入通道,通道均采用相同的特征提取网络结构,其中上通道的输入是完整RGB颜色和点云坐标信息,该通道主要关注于复杂物体对象场景特征,下通道仅输入点云坐标信息,该通道主要关注于点云的空间几何特征;在每个通道中为了更好地提取局部与全局信息,改善网络性能,引入了层间融合模块和Transformer通道特征扩充模块;同时,针对现有的三维点云语义分割方法缺乏关注局部特征与全局特征的联系,导致对复杂场景的分割效果不佳的问题,对上下两个通道所提取的特征通过DCFFS(dual-channel feature fusion segmentation)模块进行融合,并对真实场景进行语义分割。对室内复杂场景和大规模室内外场景点云分割基准进行了实验,实验结果表明,提出的DCFNet分割方法在S3DIS Area5室内场景数据集以及STPLS3D室外场景数据集上,平均交并比(MIOU)分别达到71.18%和48.87%,平均准确率(MACC)和整体准确率(OACC)分别达到77.01%与86.91%,实现了真实场景的高精度点云语义分割。展开更多
针对金属涂层缺陷图像分割中存在特征提取能力弱和分割精度低的问题,提出了一种改进的U^(2)-Net分割模型。首先,在U型残差块(RSU)中嵌入改进的增大感受野模块(receptive field block light,RFB_l),组成新的特征提取层,增强对细节特征的...针对金属涂层缺陷图像分割中存在特征提取能力弱和分割精度低的问题,提出了一种改进的U^(2)-Net分割模型。首先,在U型残差块(RSU)中嵌入改进的增大感受野模块(receptive field block light,RFB_l),组成新的特征提取层,增强对细节特征的学习能力,解决了网络由于感受野受限造成分割精度低的问题;其次,在U^(2)-Net分割模型的解码阶段引入有效的边缘增强注意力机制(contour enhanced attention,CEA),抑制网络中的冗余特征,获取具有详细位置信息的特征注意力图,增强了边界与背景信息的差异性,从而达到更精确的分割效果。实验结果表明,该模型在两个金属涂层剥落与腐蚀数据集上的平均交并比、准确率、查准率、召回率和F_1-measure分别达到80.36%、96.29%、87.43%、84.61%和86.00%,相比于常用的SegNet、U-Net以及U^(2)-Net分割网络的性能都有较大提升。展开更多
文摘在基于深度学习的三维点云语义分割算法中,为了加强提取局部特征细粒度能力和学习不同局部邻域之间的长程依赖性,提出一种基于注意力机制和全局特征优化的神经网络。首先,通过加性注意力的形式设计单通道注意力(SCA)模块和点注意力(PA)模块,前者通过自适应调节单通道中各点特征加强对局部特征的分辨能力,后者通过调节单点特征向量之间的重要程度抑制无用特征并减少特征冗余;其次,加入全局特征聚合(GFA)模块,聚合各局部邻域特征,以捕获全局上下文信息,从而提高语义分割精度。实验结果表明,在点云数据集S3DIS上,所提网络的平均交并比(mIoU)相较于RandLA-Net(Random sampling and an effective Local feature Aggregator Network)提升了1.8个百分点,分割性能良好,具有较好的适应性。
文摘真实场景点云不仅具有点云的空间几何信息,还具有三维物体的颜色信息,现有的网络无法有效利用真实场景的局部特征以及空间几何特征信息,因此提出了一种双通道特征融合的真实场景点云语义分割方法DCFNet(dual-channel feature fusion of real scene for point cloud semantic segmentation)可用于不同场景下的室内外场景语义分割。更具体地说,为了解决不能充分提取真实场景点云颜色信息的问题,该方法采用上下两个输入通道,通道均采用相同的特征提取网络结构,其中上通道的输入是完整RGB颜色和点云坐标信息,该通道主要关注于复杂物体对象场景特征,下通道仅输入点云坐标信息,该通道主要关注于点云的空间几何特征;在每个通道中为了更好地提取局部与全局信息,改善网络性能,引入了层间融合模块和Transformer通道特征扩充模块;同时,针对现有的三维点云语义分割方法缺乏关注局部特征与全局特征的联系,导致对复杂场景的分割效果不佳的问题,对上下两个通道所提取的特征通过DCFFS(dual-channel feature fusion segmentation)模块进行融合,并对真实场景进行语义分割。对室内复杂场景和大规模室内外场景点云分割基准进行了实验,实验结果表明,提出的DCFNet分割方法在S3DIS Area5室内场景数据集以及STPLS3D室外场景数据集上,平均交并比(MIOU)分别达到71.18%和48.87%,平均准确率(MACC)和整体准确率(OACC)分别达到77.01%与86.91%,实现了真实场景的高精度点云语义分割。