期刊文献+
共找到1,345篇文章
< 1 2 68 >
每页显示 20 50 100
Hyperbaric oxygen preconditioning improves postoperative cognitive dysfunction by reducing oxidant stress and inflammation 被引量:22
1
作者 Zhi-xin Gao Jin Rao Yuan-hai Li 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第2期329-336,共8页
Postoperative cognitive dysfunction is a crucial public health issue that has been increasingly studied in efforts to reduce symptoms or prevent its occurrence. However, effective advances remain lacking. Hyperbaric o... Postoperative cognitive dysfunction is a crucial public health issue that has been increasingly studied in efforts to reduce symptoms or prevent its occurrence. However, effective advances remain lacking. Hyperbaric oxygen preconditioning has proved to protect vital organs, such as the heart, liver, and brain. Recently, it has been introduced and widely studied in the prevention of postoperative cognitive dysfunction, with promising results. However, the neuroprotective mechanisms underlying this phenomenon remain controversial. This review summarizes and highlights the definition and application of hyperbaric oxygen preconditioning, the perniciousness and pathogenetic mechanism underlying postoperative cognitive dysfunction, and the effects that hyperbaric oxygen preconditioning has on postoperative cognitive dysfunction. Finally, we conclude that hyperbaric oxygen preconditioning is an effective and feasible method to prevent, alleviate, and improve postoperative cognitive dysfunction, and that its mechanism of action is very complex, involving the stimulation of endogenous antioxidant and anti-inflammation defense systems. 展开更多
关键词 nerve regeneration brain injury hyperbaric oxygenation preconditioning antioxidants antiinflammation reactive oxygen species oxidant stress inflammation protection post-operation cognitive dysfunction neural regeneration
下载PDF
Significance of oxidative stress and antioxidant capacity tests as biomarkers of premature ovarian insufficiency: A case control study
2
作者 Kaoru Kakinuma Toshiyuki Kakinuma 《World Journal of Clinical Cases》 SCIE 2024年第3期479-487,共9页
BACKGROUND Premature ovarian insufficiency(POI)is a condition that causes secondary amenorrhea owing to ovarian hypofunction at an early stage.Early follicular depletion results in intractable infertility,thereby cons... BACKGROUND Premature ovarian insufficiency(POI)is a condition that causes secondary amenorrhea owing to ovarian hypofunction at an early stage.Early follicular depletion results in intractable infertility,thereby considerably reducing the quality of life of females.Given the continuum in weakened ovarian function,progressing from incipient ovarian failure(IOF)to transitional ovarian failure and further to POI,it is necessary to develop biomarkers for predicting POI.The oxidative stress states in IOF and POI were comprehensively evaluated via oxidative stress[diacron-reactive oxygen metabolites(d-ROMs)]test and anti-oxidant capacity[biological antioxidant potential(BAP)].METHODS Females presenting with secondary amenorrhea over 4 mo and a follicle stimulating hormone level of>40 mIU/mL were categorized into the POI group.Females presenting with a normal menstrual cycle and a follicle stimulating hormone level of>10.2 mIU/mL were categorized into the IOF group.Healthy females without ovarian hypofunction were categorized into the control group.Among females aged<40 years who visited our hospital from January 2021 to June 2022,we recruited 11 patients into both POI and IOF groups.For the potential antioxidant capacity,the relative oxidative stress index(BAP/d-ROMs×100)was calculated,and the oxidative stress defense system was comprehensively evaluated.RESULTS d-ROMs were significantly higher in the POI and IOF groups than in the control group,(478.2±58.7 U.CARR,434.5±60.6 U.CARR,and 341.1±35.1 U.CARR,respectively)(U.CARR is equivalent to 0.08 mg/dL of hydrogen peroxide).However,no significant difference was found between the POI and IOF groups.Regarding BAP,no significant difference was found between the control,IOF,and POI groups(2078.5±157.4μmol/L,2116.2±240.2μmol/L,and 2029.0±186.4μmol/L,respectively).The oxidative stress index was significantly higher in the POI and IOF groups than in the control group(23.7±3.3,20.7±3.6,and 16.5±2.1,respectively).However,no significant difference was found between the POI and IOF groups.CONCLUSION High levels of oxidative stress suggest that evaluating the oxidative stress state may be a useful indicator for the early detection of POI. 展开更多
关键词 Premature ovarian insufficiency Oxidative stress Diacron-reactive oxygen metabolites test Biological antioxidant potential INFERTILITY BIOMARKER
下载PDF
Biochanin A attenuates spinal cord injury in rats during early stages by inhibiting oxidative stress and inflammasome activation 被引量:1
3
作者 Xigong Li Jing Fu +3 位作者 Ming Guan Haifei Shi Wenming Pan Xianfeng Lou 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2050-2056,共7页
Previous studies have shown that Biochanin A,a flavonoid compound with estrogenic effects,can serve as a neuroprotective agent in the context of cerebral ischemia/reperfusion injury;howeve r,its effect on spinal cord ... Previous studies have shown that Biochanin A,a flavonoid compound with estrogenic effects,can serve as a neuroprotective agent in the context of cerebral ischemia/reperfusion injury;howeve r,its effect on spinal cord injury is still unclea r. In this study,a rat model of spinal cord injury was established using the heavy o bject impact method,and the rats were then treated with Biochanin A(40 mg/kg) via intrape ritoneal injection for 14 consecutive days.The res ults showed that Biochanin A effectively alleviated spinal cord neuronal injury and spinal co rd tissue injury,reduced inflammation and oxidative stress in spinal cord neuro ns,and reduced apoptosis and pyroptosis.In addition,Biochanin A inhibited the expression of inflammasome-related proteins(ASC,NLRP3,and GSDMD)and the Toll-like receptor 4/nuclear factor-κB pathway,activated the Nrf2/heme oxygenase 1 signaling pathway,and increased the expression of the autophagy markers LC3 Ⅱ,Beclin-1,and P62.Moreove r,the therapeutic effects of Biochanin A on early post-s pinal cord injury were similar to those of methylprednisolone.These findings suggest that Biochanin A protected neurons in the injured spinal cord through the Toll-like receptor 4/nuclear factor κB and Nrf2/heme oxygenase 1 signaling pathways.These findings suggest that Biochanin A can alleviate post-spinal cord injury at an early stage. 展开更多
关键词 apoptosis AUTOPHAGY Biochanin A heme oxygenase 1 INFLAMMATION Nrf2 protein nuclear factor kappa-B oxidative stress spinal cord injury Toll-like receptor 4
下载PDF
Biochanin-A attenuates high-fat diet and streptozotocin-induced hyperlipidemia and oxidative stress in rats by improving antioxidant status and lipid metabolic markers
4
作者 P.P.Sethumathi V.V.Sathibabu Uddandrao +7 位作者 P.Chandrasekaran S.Sengottuvelu P.Tamilmani P.Ponmurugan S.Vadivukkarasi M.Santhanakumar M.Shabana Begum G.Saravanan 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2023年第11期460-468,共9页
Objective:To determine how biochanin-A(BCA)affects high-fat diet and streptozotocin-induced pathological changes in lipid metabolism and antioxidant status in diabetic rats.Methods:Diabetic rats were orally administer... Objective:To determine how biochanin-A(BCA)affects high-fat diet and streptozotocin-induced pathological changes in lipid metabolism and antioxidant status in diabetic rats.Methods:Diabetic rats were orally administered BCA(10 mg/kg body weight)for 30 days to investigate its effects on lipid profiles and oxidative stress markers in the liver and kidney.In addition,the mRNA expression of antioxidant and lipid metabolism enzymes in the liver was examined.Results:BCA attenuated hyperlipidemia by regulating mRNA expressions of HMG-CoA reductase,fatty acid synthase,carnitine palmitoyl transferase,and acetyl-CoA carboxylase.Additionally,BCA reduced high-fat diet and streptozotocin-induced oxidative stress by suppressing lipid peroxidation,improving superoxide dismutase,catalase,and glutathione peroxidase levels,and upregulating mRNA expressions of these enzymes.Conclusions:BCA may be a promising nutraceutical for the treatment of dyslipidemia and oxidative stress associated with diabetes. 展开更多
关键词 Antioxidant Biochanin-A NUTRACEUTICAL Obesity HYPERLIPIDEMIA Type 2 diabetes mellitus Oxidative stress
下载PDF
Silicon and Nitric Oxide-Mediated Regulation of Growth Attributes, Metabolites and Antioxidant Defense System of Radish (Raphanus sativus L.) under Arsenic Stress
5
作者 Savita Bhardwaj Tunisha Verma +1 位作者 Ali Raza Dhriti Kapoor 《Phyton-International Journal of Experimental Botany》 SCIE 2023年第3期763-782,共20页
Arsenic(As)contaminated food chains have emerged as a serious public concern for humans and animals and are known to affect the cultivation of edible crops throughout the world.Therefore,the present study was designed... Arsenic(As)contaminated food chains have emerged as a serious public concern for humans and animals and are known to affect the cultivation of edible crops throughout the world.Therefore,the present study was designed to investigate the individual as well as the combined effects of exogenous silicon(Si)and sodium nitroprusside(SNP),a nitric oxide(NO)donor,on plant growth,metabolites,and antioxidant defense systems of radish(Raphanus sativus L.)plants under three different concentrations of As stress,i.e.,0.3,0.5,and 0.7 mM in a pot experiment.The results showed that As stress reduced the growth parameters of radish plants by increasing the level of oxidative stress markers,i.e.,malondialdehyde and hydrogen peroxide.However,foliar application of Si(2 mM)and pretreatment with SNP(100μM)alone as well as in combination with Si improved the plant growth parameters,i.e.,root length,fresh and dry weight of plants under As stress.Furthermore,As stress also reduced protein,and metabolites contents(flavonoids,phenolic and anthocyanin).Activities of antioxidative enzymes such as catalase(CAT),ascorbate peroxidase(APX),guaiacol peroxidase(POD),and polyphenol oxidase(PPO),as well as the content of non-enzymatic antioxidants(glutathione and ascorbic acid)decreased under As stress.In most of the parameters in radish,As III concentration showed maximum reduction,as compared to As I and II concentrations.However,the individual and combined application of Si and NO significantly alleviated the As-mediated oxidative stress in radish plants by increasing the protein,and metabolites content.Enhancement in the activities of CAT,APX,POD and PPO enzymes were recorded.Contents of glutathione and ascorbic acid were also enhanced in response to co-application of Si and NO under As stress.Results obtained were more pronounced when Si and NO were applied in combination under As stress,as compared to their individual application.In short,the current study highlights that Si and NO synergistically regulate plant growth through lowering the As-mediated oxidative stress by upregulating the metabolites content,activity of antioxidative enzymes and non-enzymatic antioxidants in radish plants. 展开更多
关键词 Antioxidant defense system oxidative stress metal stress metabolism reactive oxygen species crop productivity
下载PDF
Implication of Oxidative Stress and Antioxidant Defence Systems in Symptomatic and Asymptomatic Plasmodium falciparum Malaria Infection among Children Aged 1 to 15 Years in the Mount Cameroon Area
6
作者 Tambong Ako Ojongnkpot David Denis Sofeu-Feugaing +2 位作者 Vanessa Tita Jugha Germain Sotoing Taiwe Helen Kuokuo Kimbi 《Journal of Biosciences and Medicines》 CAS 2023年第2期124-145,共22页
It is known that the pathogenicity of Plasmodium induces the breakdown of haemoglobin, which leads to the induction of oxidative stress. This study aimed to identify the possible effects of oxidative stress and antiox... It is known that the pathogenicity of Plasmodium induces the breakdown of haemoglobin, which leads to the induction of oxidative stress. This study aimed to identify the possible effects of oxidative stress and antioxidant defence systems in symptomatic and asymptomatic Plasmodium falciparum malaria infection in children (1 - 15 years old) in the Mount Cameroon vicinity. This cross-sectional study involved blood samples collected from 473 children and examined for malaria parasitaemia. Full blood counts were performed using an automated haemoanalyser. Serum oxidative stress status (malondialdehyde (MDA), nitric oxide (NO), reduced glutathione (GSH), catalase (CAT), superoxide dismutase (SOD) and vitamin C (Vit C)) were each determined by colorimetric enzymatic assays. The prevalence of malaria parasite infection was 32.1% among the participants. Out of that, 62.5% of patients with parasitaemia were symptomatic. Anaemia prevalence increased significantly with parasite density. MDA levels were significantly higher in patients with malaria symptoms than in those without symptoms. A significant and positive correlation was detected between MDA (r = 0.831, P < 0.05), NO (r = 0.779, P < 0.05), and malaria parasite density while, a significant and negative relationship occurred between parasite density and GSH (r = ?0.763, P < 0.05) and Vit C (r = ?0.826, P < 0.05) levels, SOD (r = ?0.621, P < 0.05) and CAT (r = ?0.817, P < 0.05) activities. The SOD activity and GSH level significantly decreased (P < 0.05) with an increase in the MDA levels. These findings showed that MDA and nitric oxide levels increased both in malaria participants with or without symptoms. A similar decrease in the antioxidant defence system was observed in both symptomatic and asymptomatic patients. Therefore, there is a need to develop public health policies that encourage routine diagnosis and treatment of malaria in seemingly healthy people (asymptomatic cases), and this will play an essential role in controlling malaria in tropical countries. 展开更多
关键词 MALARIA ASYMPTOMATIC SYMPTOMATIC Oxidative stress Antioxidant Defence System
下载PDF
Effects of pyraclostrobin on growth,oxidative stress,and gene expression in relation to stress and ATP-binding cassette transporters in Tetrahymena thermophila
7
作者 Yang LIU Jiale ZHANG +4 位作者 Peng XIAO Xin LIU Yisifu MA Jing ZHANG Bangjun ZHANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期150-162,共13页
Pyraclostrobin(PYR),a widely used fungicide,has negative effects on fish and algae,but its toxicity in protozoa remains unclear.In this study,the effects of PYR on the growth,oxidative stress,and gene expression relat... Pyraclostrobin(PYR),a widely used fungicide,has negative effects on fish and algae,but its toxicity in protozoa remains unclear.In this study,the effects of PYR on the growth,oxidative stress,and gene expression related to stress and ATP-binding cassette(ABC)transporters in Tetrahymena thermophila were investigated.The result showed that the 96-h IC_(50)of PYR against T.thermophila was 17.2 mg/L.Moreover,PYR inhibited the growth of T.thermophila in concentration-or time-dependent manner.A morphological study revealed that the shape and size of T.thermophila changed,and damage of cell membrane surface was observed by scanning electron microscopy after 96 h of PYR exposure.The activities of superoxide dismutase(SOD)and catalase(CAT)increased throughout the experiment.In contrast,the glutathione(GSH)content was increased at 24 h and 48 h of exposure and decreased at 96 h.Moreover,a significant increase in malondialdehyde(MDA)level was observed in T.thermophila after96 h of exposure.Furthermore,PYR upregulated the HSP703,HSP705,GPx2,and ABAC15 gene expression in the 0.1–5-mg/L groups and downregulated the HSP704,HSP90,TGR,and ABCC52 mRNA levels at 96 h of exposure.These results suggest that PYR may exert adverse effects on T.thermophila by inducing oxidative stress and changing the gene expression related to ABC transporters and stress,which may enrich the understanding of the toxicity mechanism of PYR in aquatic organisms and provide reference data for aquatic ecological risk assessments. 展开更多
关键词 PYRACLOSTROBIN Tetrahymena thermophila GROWTH oxidative stress gene expression
下载PDF
Tilapia Head Glycolipid Alleviates Indomethacin-Induced Gastric Ulcer via Regulating Oxidative Stress and Inflammation Through COX/PGE2 Signaling Pathway in Adult Rats
8
作者 WANG Bohui WU Haixing +6 位作者 SHAO Mingyang JIANG Mengqi SU Ruiheng GAO Xia XIA Guanghua SHI Haohao SHEN Xuanri 《Journal of Ocean University of China》 SCIE CAS CSCD 2024年第3期743-754,共12页
The aim of this experiment was to investigate the ameliorative effect and molecular mechanism of tilapia head glycolipid(TH-GL)on indomethacin(IDM)-induced gastric ulcer in male Sprague Dawley(SD)rats.The gastric ulce... The aim of this experiment was to investigate the ameliorative effect and molecular mechanism of tilapia head glycolipid(TH-GL)on indomethacin(IDM)-induced gastric ulcer in male Sprague Dawley(SD)rats.The gastric ulcer model was established by oral administration of 30mgkg^(-1) IDM after 7 days of TH-GL or omeprazole(OME)administration in rats.Then the macroscopic gastric injury symptoms,gastric mucosa protective factor cyclooxygenase 1(COX-1),cyclooxygenase 2(COX-2),prostaglandin E_(2)(PGE_(2)),the levels of oxidative stress,and inflammatory cytokine expression levels in the rats were analyzed.The experimental results showed that multiple ulcers appeared on the gastric surface of the rats in the model group.Compared to the model group,TH-GL significantly alleviated gastric ulcers and reduced the gastric damage index in rats.In addition,TH-GL significantly promoted the expression of constitutive enzyme COX-1 while inhibited the expression of inducible enzyme COX-2,and make PGE2 maintain at normal levels.TH-GL also inhibited oxidative stress and inflammatory responses,increased superoxide dismutase(SOD)activity and glutathione(GSH)content,decreased the level of malondialdehyde(MDA)and the content of pro-inflammatory factor.In conclusion,these results suggested that TH-GL could maintain the expression levels of COX-1 and PGE2 while inhibit the expression of COX-2 in the gastric of rat and then prevent IDM-induced gastric ulcer,which may be related to the regulation of oxidative stress and inflammatory response.Therefore,TH-GL might be a new option for the prevention of gastric diseases induced by IDM. 展开更多
关键词 tilapia head glycolipid indomethacin gastric ulcer oxidative stress INFLAMMATION
下载PDF
Heat stress induced hepatocyte apoptosis in largemouth bass Micropterus salmoides via IRE1α/TRAF2/ASK1/JNK pathway
9
作者 Xuqian ZHAO Wenjia MAO +1 位作者 Zijie LIN Qufei LING 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第3期988-1000,共13页
Heat stress(HS)has been shown to adversely affect fish livers and can lead to extensive apoptosis.To investigate the relationship between endoplasmic reticulum(ER)stress and HS-induced apoptosis in fish livers,we isol... Heat stress(HS)has been shown to adversely affect fish livers and can lead to extensive apoptosis.To investigate the relationship between endoplasmic reticulum(ER)stress and HS-induced apoptosis in fish livers,we isolated and cultured primary hepatocytes of largemouth bass,Micropterus salmoides by trypsin method,then established an in-vitro model of liver cells under HS(35℃).The contents of lactic dehydrogenase(LDH)and hydrogen peroxide(H2O2)were determined to evaluate the effects of HS on hepatocyte injury and oxidative stress.RT-qPCR was performed to discover the key genes in unfolded protein response(UPR)pathways involved at different HS duration.ERS inhibitor 4-PBA and IRE1αinhibitor 4μ8C were used to further investigate the effects of HS on IRE1αapoptosis pathway in hepatocytes.Results show that HS led to significant increases in the release of LDH,the content of H2O2,and the expressions of oxidative protein folding genes(ero1αand pdi)under HS,suggesting severe hepatocyte injury and oxidative stress happened in heat-stressed largemouth bass hepatocytes.The continuous activation of IRE1αpathway genes(grp78,grp94,atf6,perk,eif2a,atf4,chop,ire1α,traf2,ask1,jnk1,and jnk2)indicated that HS led significantly to ER stress.In particular,the mRNA expression levels of ER stress-related genes(grp78,grp94,atf6,perk,ire1α,chop,jnk1,and jnk2)in the high temperature(HT)+4-PBA group and the HT+4μ8C group were significantly down-regulated under HS.After 4μ8C treatment,the expression levels of apoptosis-related genes(caspase-2,caspase-3,caspase-6,caspase-7,caspase-8,caspase-9,and caspase-10)and LDH content were significantly decreased,whereas the cell survival rate was significantly increased when given 4-PBA or 4μ8C treatment.These findings demonstrate that HS could induce liver apoptosis of largemouth bass through the IRE1αpathway,which may act as a key switch mediating liver apoptosis of largemouth bass under HS. 展开更多
关键词 heat stress Micropterus salmoides endoplasmic reticulum stress APOPTOSIS oxidative stress
下载PDF
Phlorizin alleviates deltamethrin-induced oxidative stress in brine shrimp Artemia
10
作者 Dandan MA Qingli ZHOU +5 位作者 Liying SUI Qingbin GUO Huanhuan LIU Honghe LIANG Zhenjing LI Zhongna SANG 《Journal of Oceanology and Limnology》 SCIE CAS CSCD 2024年第1期163-173,共11页
Deltamethrin(DEL),a commonly used pyrethroid pesticide,results in higher reactive oxygen species(ROS)levels in aquatic animals,which consequently unbalance the redox state.Phlorizin(PHL)is a flavonoid and a natural pr... Deltamethrin(DEL),a commonly used pyrethroid pesticide,results in higher reactive oxygen species(ROS)levels in aquatic animals,which consequently unbalance the redox state.Phlorizin(PHL)is a flavonoid and a natural product promising to prevent or reduce pesticide-induced oxidative stress.Artemia is a micro-crustacean widely used in marine hatcheries and an experimental aquatic organism for environmental toxicology research.This research aimed to evaluate the toxicity of DEL on Artemia and the antioxidative effect of PHL against the toxicity.Results show that 0.08-mg/mL PHL exerted its antioxidative effects on hatching percentage of the cysts in 24-h incubation and on body length and survival rate of Artemia in 12-d culture.After 12-d culture,12-,24-,and 36-h DEL exposure showed significant drops in SOD,CAT,and GSH-Px enzyme activities,and significant increases in ROS and malondialdehyde(MDA)levels in Artemia(P<0.05).On the contrary,0.08-mg/mL PHL application improved the enzyme activities and decreased the ROS and MDA levels(P<0.05).Moreover,0.08-mg/mL PHL significantly increased mRNA expression levels of Cu/Zn SOD,CAT,GST,HO-1,NQO1,and Nrf2,and decreased mRNA expression level of Keap1 in the DEL-exposed Artemia(P<0.05).Therefore,DEL is toxic to Artemia,while PHL alleviates DEL-induced oxidative damage by possibly regulating the Nrf2signaling pathway.This study provided a theoretical basis for PHL to reduce pesticide-induced toxicity in aquatic animals. 展开更多
关键词 ARTEMIA DELTAMETHRIN PHLORIZIN oxidative stress
下载PDF
Effect of organic mineral supplementation in reducing oxidative stress in Holstein calves during short‑term heat stress and recovery conditions
11
作者 A-Rang Son Seon-Ho Kim +3 位作者 Mahfuzul Islam Michelle Miguel Ye Pyae Naing Sang-Suk Lee 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期812-825,共14页
Background This study investigated the effects of inorganic and organic minerals on physiological responses,oxidative stress reduction,and rumen microbiota in Holstein bull calves(123.81±9.76 kg;5 months old)duri... Background This study investigated the effects of inorganic and organic minerals on physiological responses,oxidative stress reduction,and rumen microbiota in Holstein bull calves(123.81±9.76 kg;5 months old)during short-term heat stress(HS)and recovery periods.Eight Holstein calves were randomly assigned to four treatment groups:no mineral supplementation(Con),inorganic minerals(IM),organic minerals(OM),and high-concentration organic minerals(HOM)and two thermal environments(HS and recovery)using 4×2 factorial arrangement in a crossover design of four periods of 35 d.Calves were maintained in a temperature-controlled barn.The experimental period consisted of 14 d of HS,14 d of recovery condititon,and a 7-d washing period.Results Body temperature and respiration rate were higher in HS than in the recovery conditions(P<0.05).Selenium concentration in serum was high in the HOM-supplemented calves in both HS(90.38μg/dL)and recovery periods(102.00μg/dL)(P<0.05).During the HS period,the serum cortisol was 20.26 ng/mL in the HOM group,which was 5.60 ng/mL lower than in the control group(P<0.05).The total antioxidant status was the highest in the OM group(2.71 mmol Trolox equivalent/L),followed by the HOM group during HS,whereas it was highest in the HOM group(2.58 mmol Trolox equivalent/L)during the recovery period(P<0.05).Plasma malondialdehyde and HSP70 levels were decreased by HOM supplementation during the HS and recovery periods,whereas SOD and GPX levels were not significantly affected(P>0.05).The principal coordinate analysis represented that the overall rumen microbiota was not influenced by mineral supplementation;however,temperature-induced microbial structure shifts were indicated(PERMANOVA:P<0.05).At the phylum level,Firmicutes and Actinobacteria decreased,whereas Fibrobacteres,Spirochaetes,and Tenericutes increased(P<0.05),under HS conditions.The genus Treponema increased under HS conditions,while Christensenella was higher in recovery conditions(P<0.05).Conclusion HOM supplementation during HS reduced cortisol concentrations and increased total antioxidant status in Holstein bull calves,suggesting that high organic mineral supplementation may alleviate the adverse effects of HS. 展开更多
关键词 Antioxidant status Heat stress Holstein bull calves Organic mineral supplementation Oxidative stress
下载PDF
Betulin protects against isoproterenol-induced myocardial injury by inhibiting NF-κB signaling and attenuating cardiac inflammation and oxidative stress in rats
12
作者 Hital Shah Tejal Gandhi 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第6期236-244,共9页
Objective:To investigate the cardioprotective potential of betulin in isoproterenol(ISO)-induced myocardial injury in rats.Methods:Wistar rats were divided into five groups(n=10):normal,ISO,nebivolol 5 mg/kg,and betul... Objective:To investigate the cardioprotective potential of betulin in isoproterenol(ISO)-induced myocardial injury in rats.Methods:Wistar rats were divided into five groups(n=10):normal,ISO,nebivolol 5 mg/kg,and betulin(20&40 mg/kg).Nebivolol and betulin were administered orally for 29 days.ISO(85 mg/kg)was administered subcutaneously on day 27 and day 28 to induce myocardial injury.On day 29,blood was collected for determination of cardiac markers,and hemodynamic parameters were investigated.The levels of oxidative stress markers and the gene expressions of apoptotic markers and inflammatory mediators were evaluated.Moreover,2,3,5-triphenyltetrazolium chloride staining and histopathological analysis were also performed.Results:Betulin reduced the size of myocardial infarction,decreased elevated levels of cardiac enzymes,and maintained hemodynamic functions.It also inhibited ISO-induced upregulation of Bax,caspase-3,NF-κB,and IL-6,enhanced endogenous antioxidant enzymes,and reduced lipid peroxidation.Additionally,pretreatment with betulin alleviated myocardial ischemic damage,as reflected by reduced myonecrosis,edema,and inflammatory changes.Conclusions:Betulin exhibits strong cardioprotective activity against ISO-induced myocardial injury by anti-inflammatory,anti-apoptotic,and antioxidant activities. 展开更多
关键词 NF-ΚB ISOPROTERENOL BETULIN Myocardial injury Oxidative stress INFLAMMATION Apoptosis
下载PDF
Crosstalk among Oxidative Stress,Autophagy,and Apoptosis in the Protective Effects of Ginsenoside Rb1 on Brain Microvascular Endothelial Cells:A Mixed Computational and Experimental Study
13
作者 Yi-miao LUO Shu-sen LIU +5 位作者 Ming ZHAO Wei WEI Jiu-xiu YAO Jia-hui SUN Yu CAO Hao LI 《Current Medical Science》 SCIE CAS 2024年第3期578-588,共11页
Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component de... Objective Brain microvascular endothelial cells (BMECs) were found to shift from their usually inactive state to an active state in ischemic stroke (IS) and cause neuronal damage. Ginsenoside Rb1 (GRb1),a component derived from medicinal plants,is known for its pharmacological benefits in IS,but its protective effects on BMECs have yet to be explored. This study aimed to investigate the potential protective effects of GRb1 on BMECs. Methods An in vitro oxygen-glucose deprivation/reperfusion (OGD/R) model was established to mimic ischemia-reperfusion (I/R) injury. Bulk RNA-sequencing data were analyzed by using the Human Autophagy Database and various bioinformatic tools,including gene set enrichment analysis (GSEA),Gene Ontology (GO) classification and enrichment analysis,Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis,protein-protein interaction network analysis,and molecular docking. Experimental validation was also performed to ensure the reliability of our findings. Results Rb1 had a protective effect on BMECs subjected to OGD/R injury. Specifically,GRb1 was found to modulate the interplay between oxidative stress,apoptosis,and autophagy in BMECs. Key targets such as sequestosome 1 (SQSTM1/p62),autophagy related 5 (ATG5),and hypoxia-inducible factor 1-alpha (HIF-1α) were identified,highlighting their potential roles in mediating the protective effects of GRb1 against IS-induced damage. Conclusion GRbl protects BMECs against OGD/R injury by influencing oxidative stress,apoptosis,and autophagy. The identification of SQSTM1/p62,ATG5,and HIF-1α as promising targets further supports the potential of GRb1 as a therapeutic agent for IS,providing a foundation for future research into its mechanisms and applications in IS treatment. 展开更多
关键词 ischemic stroke ginsenoside Rb1 brain microvascular endothelial cells oxidative stress AUTOPHAGY APOPTOSIS bioinformatic analysis
下载PDF
Black radish root extract alleviates sodium valproate-induced liver damage via inhibiting mitochondrial membrane potential collapse and oxidative stress in mice
14
作者 Mohammad Hadi Zarei Sami Akbulut +5 位作者 Maryam Zafari Elham Saghaei Zahra Lorigooini Hossein AminiKhoei Somaye Khosravi Elham Bijad 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第7期298-306,共9页
Objective:To explore the effect of black radish(Raphanus sativus L.var niger)root extract on liver enzymes,oxidative stress,and histopathological alterations in mice with sodium valproate-induced hepatotoxicity.Method... Objective:To explore the effect of black radish(Raphanus sativus L.var niger)root extract on liver enzymes,oxidative stress,and histopathological alterations in mice with sodium valproate-induced hepatotoxicity.Methods:Thirty-two mice were divided into four groups:the control group received drinking water by gavage,the second group was administered with 100 mg/kg of sodium valproate,the third group received 300 mg/kg of black radish root extract,and the fourth group was given both sodium valproate(100 mg/kg)and black radish root extract(300 mg/kg).After 28 days,the mice were euthanized,and serum levels of aspartate aminotransferase(AST),alanine aminotransferase(ALT),and alkaline phosphatase(ALP),along with liver malondialdehyde(MDA),reactive oxygen species(ROS),mitochondrial parameters,tumor necrosis factor-alpha(TNF-α)gene expression,and histopathological changes were assessed.Results:Sodium valproate caused hepatic damage in mice,characterized by elevated serum levels of liver enzymes,increased MDA and ROS levels and TNF-αgene expression,as well as histopathological alterations.The black radish root extract significantly alleviated sodium valproate-caused hepatic injury by decreasing the serum levels of ALT and AST,MDA,ROS,TNF-αgene expression,as well as mitochondrial impairment,but did not have a significant effect on sodium valproate-induced histopathological changes.Conclusions:The black radish root extract demonstrates protective effects against sodium valproate-induced liver injury,possibly through mitigating oxidative stress,mitochondrial impairment,and inflammatory mediator expression. 展开更多
关键词 Black radish Raphanus sativus Sodium valproate HEPATOTOXICITY Oxidative stress ANTI-INFLAMMATION
下载PDF
Ethyl acetate fraction of Sargassum pallidum extract attenuates particulate matter-induced oxidative stress and inflammation in keratinocytes and zebrafish
15
作者 Wook Chul Kim Ji-Won Park +3 位作者 Bohyun Yun WonWoo Lee Kyung-Min Choi Seung-Hong Lee 《Asian Pacific Journal of Tropical Biomedicine》 SCIE CAS 2024年第4期137-146,共10页
Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCa... Objective:To evaluate the effect of the ethyl acetate fraction derived from Sargassum pallidum extract against particulate matter(PM)-induced oxidative stress and inflammation in HaCaT cells and zebrafish.Methods:HaCaT cells and zebrafish were used to evaluate the protective effects of the ethyl acetate fraction of Sargassum pallidum extract against PM-induced oxidative stress and inflammation.The production of nitric oxide(NO),intracellular ROS,prostaglandin E_(2)(PGE_(2)),and pro-inflammatory cytokines,and the expression levels of COX-2,iNOS,and NF-κB were evaluated in PM-induced HaCaT cells.Furthermore,the levels of ROS,NO,and lipid peroxidation were assessed in the PM-exposed zebrafish model.Results:The ethyl acetate fraction of Sargassum pallidum extract significantly decreased the production of NO,intracellular ROS,and PGE_(2) in PM-induced HaCaT cells.In addition,the fraction markedly suppressed the levels of pro-inflammatory cytokines and inhibited the expression levels of COX-2,iNOS,and NF-κB.Furthermore,it displayed remarkable protective effects against PM-induced inflammatory response and oxidative stress,represented by the reduction of NO,ROS,and lipid peroxidation in zebrafish.Conclusions:The ethyl acetate fraction of Sargassum pallidum extract exhibits a protective effect against PM-induced oxidative stress and inflammation both in vitro and in vivo and has the potential as a candidate for the development of pharmaceutical and cosmeceutical products. 展开更多
关键词 Particulate matter INFLAMMATION Oxidative stress Sargassum pallidum Ethyl acetate fraction ZEBRAFISH
下载PDF
Hydrogen-rich water alleviates constipation by attenuating oxidative stress through the sirtuin1/nuclear factor-erythroid-2-related factor 2/heme oxygenase-1 signaling pathway
16
作者 Kai-Di Chen Kui-Ling Wang +7 位作者 Chen Chen Yi-Jia Zhu Wen-Wen Tang Yu-Ji Wang Ze-Peng Chen Lin-Hai He Yu-Gen Chen Wei Zhang 《World Journal of Gastroenterology》 SCIE CAS 2024年第20期2709-2725,共17页
BACKGROUND Constipation,a highly prevalent functional gastrointestinal disorder,induces a significant burden on the quality of patients'life and is associated with substantial healthcare expenditures.Therefore,ide... BACKGROUND Constipation,a highly prevalent functional gastrointestinal disorder,induces a significant burden on the quality of patients'life and is associated with substantial healthcare expenditures.Therefore,identifying efficient therapeutic modalities for constipation is of paramount importance.Oxidative stress is a pivotal contributor to colonic dysmotility and is the underlying pathology responsible for constipation symptoms.Consequently,we postulate that hydrogen therapy,an emerging and promising intervention,can serve as a safe and efficacious treatment for constipation.AIM To determine whether hydrogen-rich water(HRW)alleviates constipation and its potential mechanism.METHODS Constipation models were established by orally loperamide to Sprague-Dawley rats.Rats freely consumed HRW,and were recorded their 24 h total stool weight,fecal water content,and charcoal propulsion rate.Fecal samples were subjected to 16S rDNA gene sequencing.Serum non-targeted metabolomic analysis,malondialdehyde,and superoxide dismutase levels were determined.Colonic tissues were stained with hematoxylin and eosin,Alcian blue-periodic acid-Schiff,reactive oxygen species(ROS)immunofluorescence,and immunohistochemistry for cell growth factor receptor kit(c-kit),PGP 9.5,sirtuin1(SIRT1),nuclear factor-erythroid-2-related factor 2(Nrf2),and heme oxygenase-1(HO-1).Quantitative real-time PCR and western blot analysis were conducted to determine the expression level of SIRT1,Nrf2 and HO-1.A rescue experiment was conducted by intraperitoneally injecting the SIRT1 inhibitor,EX527,into constipated rats.NCM460 cells were induced with H2O2 and treated with the metabolites to evaluate ROS and SIRT1 expression.RESULTS HRW alleviated constipation symptoms by improving the total amount of stool over 24 h,fecal water content,charcoal propulsion rate,thickness of the intestinal mucus layer,c-kit expression,and the number of intestinal neurons.HRW modulated intestinal microbiota imbalance and abnormalities in serum metabolism.HRW could also reduce intestinal oxidative stress through the SIRT1/Nrf2/HO-1 signaling pathway.This regulatory effect on oxidative stress was confirmed via an intraperitoneal injection of a SIRT1 inhibitor to constipated rats.The serum metabolites,β-leucine(β-Leu)and traumatic acid,were also found to attenuate H2O2-induced oxidative stress in NCM460 cells by up-regulating SIRT1.CONCLUSION HRW attenuates constipation-associated intestinal oxidative stress via SIRT1/Nrf2/HO-1 signaling pathway,modulating gut microbiota and serum metabolites.β-Leu and traumatic acid are potential metabolites that upregulate SIRT1 expression and reduce oxidative stress. 展开更多
关键词 Hydrogen-rich water CONSTIPATION Sirtuin1 Oxidative stress Gut microbiota Serum metabolites
下载PDF
Hesperidin ameliorates H_(2)O_(2)-induced bovine mammary epithelial cell oxidative stress via the Nrf2 signaling pathway
17
作者 Qi Huang Jiashuo Liu +2 位作者 Can Peng Xuefeng Han Zhiliang Tan 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第4期1737-1750,共14页
Background Hesperidin is a citrus flavonoid with anti-inflammatory and antioxidant potential. However, its protective effects on bovine mammary epithelial cells(b MECs) exposed to oxidative stress have not been elucid... Background Hesperidin is a citrus flavonoid with anti-inflammatory and antioxidant potential. However, its protective effects on bovine mammary epithelial cells(b MECs) exposed to oxidative stress have not been elucidated.Results In this study, we investigated the effects of hesperidin on H_(2)O_(2)-induced oxidative stress in b MECs and the underlying molecular mechanism. We found that hesperidin attenuated H_(2)O_(2)-induced cell damage by reducing reactive oxygen species(ROS) and malondialdehyde(MDA) levels, increasing catalase(CAT) activity, and improving cell proliferation and mitochondrial membrane potential. Moreover, hesperidin activated the Keap1/Nrf2/ARE signaling pathway by inducing the nuclear translocation of Nrf2 and the expression of its downstream genes NQO1 and HO-1, which are antioxidant enzymes involved in ROS scavenging and cellular redox balance. The protective effects of hesperidin were blocked by the Nrf2 inhibitor ML385, indicating that they were Nrf2 dependent.Conclusions Our results suggest that hesperidin could protect b MECs from oxidative stress injury by activating the Nrf2 signaling pathway, suggesting that hesperidin as a natural antioxidant has positive potential as a feed additive or plant drug to promote the health benefits of bovine mammary. 展开更多
关键词 Bovine mammary epithelial cell HESPERIDIN Nrf2 signaling pathway Oxidative stress
下载PDF
Accurate models and nutritional strategies for specific oxidative stress factors: Does the dose matter in swine production?
18
作者 Changming Hong Yujian Huang +6 位作者 Shuting Cao Li Wang Xuefen Yang Shenglan Hu Kaiguo Gao Zongyong Jiang Hao Xiao 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第2期519-534,共16页
Oxidative stress has been associated with a number of physiological problems in swine,including reduced production efficiency.Recently,although there has been increased research into regulatory mechanisms and antioxid... Oxidative stress has been associated with a number of physiological problems in swine,including reduced production efficiency.Recently,although there has been increased research into regulatory mechanisms and antioxidant strategies in relation to oxidative stress-induced pig production,it remains so far largely unsuccessful to develop accurate models and nutritional strategies for specific oxidative stress factors.Here,we discuss the dose and dose intensity of the causes of oxidative stress involving physiological,environmental and dietary factors,recent research models and the antioxidant strategies to provide theoretical guidance for future oxidative stress research in swine. 展开更多
关键词 Accurate models DOSE Nutritional strategies Oxidative stress SWINE
下载PDF
Mufangji tang ameliorates pulmonary arterial hypertension through improving vascular remodeling,inhibiting inflammatory response and oxidative stress,and inducing apoptosis
19
作者 Yu-Ming Wang Hong-Wei Tao +5 位作者 Feng-Chan Wang Ping Han Na Liu Guo-Jing Zhao Hai-Bo Hu Xue-Chao Lu 《Traditional Medicine Research》 2024年第2期52-65,共14页
Background:Mufangji tang(MFJT)is composed of Ramulus Cinnamomi,Radix Ginseng,Cocculus orbiculatus(Linn.)DC.,and Gypsum.In clinical settings,MFJT has been effectively employed in addressing a range of respiratory disor... Background:Mufangji tang(MFJT)is composed of Ramulus Cinnamomi,Radix Ginseng,Cocculus orbiculatus(Linn.)DC.,and Gypsum.In clinical settings,MFJT has been effectively employed in addressing a range of respiratory disorders,notably including pulmonary arterial hypertension(PAH).However,the mechanism of action of MFJT on PAH remains unknown.Methods:In this study,a monocrotaline-induced PAH rat model was established and treated with MFJT.The therapeutic effects of MFJT on PAH rat model were evaluated.Network pharmacology was conducted to screen the possible targets for MFJT on PAH,and the molecular docking between the main active components and the core targets was carried out.The key targets identified from network pharmacology were tested.Results:Results showed significant therapeutic effects of MFJT on PAH rat model.Analysis of network pharmacology revealed several potential targets related to apoptosis,inflammation,oxidative stress,and vascular remodeling.Molecular docking showed that the key components were well docked with the core targets.Further experimental validation results that MFJT treatment induced apoptosis(downregulated Bcl-2 levels and upregulated Bax levels in lung tissue),inhibited inflammatory response and oxdative stress(decreased the levels of IL-1β,TNF-α,inducible NOS,and malondialdehyde,and increased the levels of endothelial nitric oxide synthase,nitric oxide,glutathione and superoxide dismutase),reduced the proliferation of pulmonary arterial smooth muscle cells(downregulated ET-1 andβ-catenin levels and ERK1/2 phosphorylation,increased GSK3βlevels).Conclusion:Our study revealed MFJT treatment could alleviate PAH in rats via induction of apoptosis,inhibition of inflammation and oxidative stress,and the prevention of vascular remodeling. 展开更多
关键词 Mufangji tang pulmonary arterial hypertension APOPTOSIS inflammatory response oxidative stress vascular remodeling
下载PDF
Silicon Mitigates Aluminum Toxicity of Tartary Buckwheat by Regulating Antioxidant Systems
20
作者 Anyin Qi Xiaonan Yan +10 位作者 Yuqing Liu Qingchen Zeng Hang Yuan Huange Huang Chenggang Liang Dabing Xiang Liang Zou Lianxin Peng Gang Zhao Jingwei Huang Yan Wan 《Phyton-International Journal of Experimental Botany》 SCIE 2024年第1期1-13,共13页
Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on... Aluminum (Al) toxicity is a considerable factor limiting crop yield and biomass in acidic soil. Tartary buckwheatgrowing in acidic soil may suffer from Al poisoning. Here, we investigated the influence of Al stress on the growthof tartary buckwheat seedling roots, and the alleviation of Al stress by silicon (Si), as has been demonstrated inmany crops. Under Al stress, root growth (total root length, primary root length, root tips, root surface area, androot volume) was significantly inhibited, and Al and malondialdehyde (MDA) accumulated in the root tips. At thesame time, catalase (CAT) and ascorbate peroxidase activities, polyphenols, flavonoids, and 1,1-diphenyl-2-picrylhydrazyl(DPPH) and 2,2′-azinobis-(3-ethylbenzthiazoline-6-sulphonate) (ABTS) free-radical scavenging abilitywere significantly decreased. After the application of Si, root growth, Al accumulation, and oxidative damage wereimproved. Compared to Al-treated seedlings, the contents of ·O2− and MDA decreased by 29.39% and 25.22%,respectively. This was associated with Si-induced increases in peroxidase and CAT enzyme activity, flavonoidcompounds, and free-radical scavenging (DPPH and ABTS). The application of Si therefore has positive effectson Al toxicity in tartary buckwheat roots by reducing Al accumulation in the roots and maintaining oxidationhomeostasis. 展开更多
关键词 Tartary buckwheat aluminum stress SILICON root growth oxidative stress
下载PDF
上一页 1 2 68 下一页 到第
使用帮助 返回顶部